Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1407.0202
Cited By
v1
v2
v3 (latest)
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Neural Information Processing Systems (NeurIPS), 2014
1 July 2014
Aaron Defazio
Francis R. Bach
Damien Scieur
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives"
50 / 878 papers shown
Accelerated Distributional Temporal Difference Learning with Linear Function Approximation
Kaicheng Jin
Yang Peng
Jiansheng Yang
Zhihua Zhang
60
0
0
16 Nov 2025
Sampling and Loss Weights in Multi-Domain Training
Mahdi Salmani
Pratik Worah
Meisam Razaviyayn
Vahab Mirrokni
NoLa
298
0
0
10 Nov 2025
Structured Matrix Scaling for Multi-Class Calibration
Eugene Berta
David Holzmüller
Michael I. Jordan
Francis Bach
128
1
0
05 Nov 2025
Convergence Analysis of SGD under Expected Smoothness
Yuta Kawamoto
Hideaki Iiduka
144
0
0
23 Oct 2025
On the Optimal Construction of Unbiased Gradient Estimators for Zeroth-Order Optimization
Shaocong Ma
Heng Huang
135
2
0
22 Oct 2025
MARS-M: When Variance Reduction Meets Matrices
Yifeng Liu
Angela Yuan
Q. Gu
222
1
0
20 Oct 2025
Personalized Collaborative Learning with Affinity-Based Variance Reduction
Chenyu Zhang
Navid Azizan
96
0
0
17 Oct 2025
The Cognitive Bandwidth Bottleneck: Shifting Long-Horizon Agent from Planning with Actions to Planning with Schemas
Baixuan Xu
Tianshi Zheng
Zhaowei Wang
Hong Ting Tsang
Weiqi Wang
Tianqing Fang
Yangqiu Song
148
0
0
08 Oct 2025
H+: An Efficient Similarity-Aware Aggregation for Byzantine Resilient Federated Learning
Shiyuan Zuo
Rongfei Fan
Cheng Zhan
Jie Xu
P. Zhao
Han Hu
AAML
111
0
0
29 Sep 2025
SPRINT: Stochastic Performative Prediction With Variance Reduction
Tian Xie
Ding Zhu
Jia Liu
Mahdi Khalili
X. Zhang
186
1
0
22 Sep 2025
Do Natural Language Descriptions of Model Activations Convey Privileged Information?
Millicent Li
Alberto Mario Ceballos Arroyo
Giordano Rogers
Naomi Saphra
Byron C. Wallace
173
2
0
16 Sep 2025
Shuffling Heuristic in Variational Inequalities: Establishing New Convergence Guarantees
Daniil Medyakov
Gleb Molodtsov
Grigoriy Evseev
Egor Petrov
Aleksandr Beznosikov
331
3
0
04 Sep 2025
A Hybrid Stochastic Gradient Tracking Method for Distributed Online Optimization Over Time-Varying Directed Networks
Xinli Shi
Xingxing Yuan
Longkang Zhu
G. Wen
84
0
0
28 Aug 2025
Stochastic Gradient Descent with Strategic Querying
Nanfei Jiang
Hoi-To Wai
M. Alizadeh
109
0
0
23 Aug 2025
Jointly Computation- and Communication-Efficient Distributed Learning
Xiaoxing Ren
Nicola Bastianello
Karl H. Johansson
Thomas Parisini
FedML
288
0
0
21 Aug 2025
Detecting COPD Through Speech Analysis: A Dataset of Danish Speech and Machine Learning Approach
Cuno Sankey-Olsen
Rasmus Hvass Olesen
Tobias Oliver Eberhard
Andreas Triantafyllopoulos
B. Schuller
Ilhan Aslan
92
0
0
04 Aug 2025
EMA Without the Lag: Bias-Corrected Iterate Averaging Schemes
Adam Block
Cyril Zhang
158
1
0
31 Jul 2025
Adjusted Shuffling SARAH: Advancing Complexity Analysis via Dynamic Gradient Weighting
Duc Toan Nguyen
Trang H. Tran
Lam M. Nguyen
133
0
0
14 Jun 2025
NDCG-Consistent Softmax Approximation with Accelerated Convergence
Yuanhao Pu
Defu Lian
Xiaolong Chen
Xu Huang
Jin Chen
Enhong Chen
161
0
0
11 Jun 2025
Leveraging Coordinate Momentum in SignSGD and Muon: Memory-Optimized Zero-Order
Egor Petrov
Grigoriy Evseev
Aleksey Antonov
Andrey Veprikov
Nikolay Bushkov
Nikolay Bushkov
Stanislav Moiseev
403
2
0
04 Jun 2025
HOME-3: High-Order Momentum Estimator with Third-Power Gradient for Convex and Smooth Nonconvex Optimization
Wei Zhang
Arif Hassan Zidan
Arif Hassan Zidan
Wei Zhang
Tianming Liu
ODL
259
0
0
16 May 2025
Permutation Randomization on Nonsmooth Nonconvex Optimization: A Theoretical and Experimental Study
Wei Zhang
Arif Hassan Zidan
Arif Hassan Zidan
Wei Zhang
Tianming Liu
189
0
0
16 May 2025
Personalized Federated Learning under Model Dissimilarity Constraints
Samuel Erickson
Mikael Johansson
FedML
665
0
0
12 May 2025
Streaming Krylov-Accelerated Stochastic Gradient Descent
Stephen Thomas
124
0
0
11 May 2025
Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL
Jiarui Yao
Yifan Hao
Hanning Zhang
Hanze Dong
Wei Xiong
Nan Jiang
Tong Zhang
LRM
385
10
0
05 May 2025
A Piecewise Lyapunov Analysis of Sub-quadratic SGD: Applications to Robust and Quantile Regression
Measurement and Modeling of Computer Systems (SIGMETRICS), 2025
Yixuan Zhang
Dongyan
Yudong Chen
Qiaomin Xie
260
1
0
11 Apr 2025
Node Embeddings via Neighbor Embeddings
Jan Niklas Böhm
Marius Keute
Alica Guzmán
Sebastian Damrich
Andrew Draganov
D. Kobak
GNN
353
0
0
31 Mar 2025
A Flexible Fairness Framework with Surrogate Loss Reweighting for Addressing Sociodemographic Disparities
Wen Xu
Elham Dolatabadi
FaML
258
1
0
21 Mar 2025
Convergence Analysis of alpha-SVRG under Strong Convexity
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
Sean Xiao
Sangwoo Park
Stefan Vlaski
229
0
0
16 Mar 2025
FedOSAA: Improving Federated Learning with One-Step Anderson Acceleration
Xue Feng
M. Paul Laiu
Thomas Strohmer
FedML
181
0
0
14 Mar 2025
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
416
1
0
20 Feb 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
214
2
0
28 Jan 2025
Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Ruichen Luo
Sebastian U Stich
Samuel Horváth
Martin Takáč
522
1
0
08 Jan 2025
Accelerated Methods with Compressed Communications for Distributed Optimization Problems under Data Similarity
AAAI Conference on Artificial Intelligence (AAAI), 2024
Dmitry Bylinkin
Aleksandr Beznosikov
413
3
0
21 Dec 2024
Analysis of regularized federated learning
Langming Liu
Dingxuan Zhou
FedML
134
3
0
03 Nov 2024
Analysis of ELSA COVID-19 Substudy response rate using machine learning algorithms
Marjan Qazvini
204
0
0
01 Nov 2024
Revisiting Gradient Normalization and Clipping for Nonconvex SGD under Heavy-Tailed Noise: Necessity, Sufficiency, and Acceleration
Tao Sun
Xinwang Liu
Kun Yuan
336
0
0
21 Oct 2024
Efficient Optimization Algorithms for Linear Adversarial Training
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
433
3
0
16 Oct 2024
Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration
Qinglun Li
Miao Zhang
Yingqi Liu
Quanjun Yin
Li Shen
Xiaochun Cao
FedML
246
1
0
09 Oct 2024
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
226
1
0
09 Oct 2024
Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation
International Conference on Learning Representations (ICLR), 2024
Marina Sheshukova
Denis Belomestny
Alain Durmus
Eric Moulines
Alexey Naumov
S. Samsonov
316
4
0
07 Oct 2024
Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms
Neural Computation (Neural Comput.), 2024
Bin Gu
Xiyuan Wei
Hualin Zhang
Yi Chang
Heng-Chiao Huang
FedML
193
0
0
03 Oct 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
International Conference on Learning Representations (ICLR), 2024
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
399
0
0
03 Oct 2024
On the SAGA algorithm with decreasing step
Luis Fredes
Bernard Bercu
Eméric Gbaguidi
221
1
0
02 Oct 2024
Debiasing Federated Learning with Correlated Client Participation
International Conference on Learning Representations (ICLR), 2024
Zhenyu Sun
Ziyang Zhang
Zheng Xu
Gauri Joshi
Pranay Sharma
Ermin Wei
FedML
297
1
0
02 Oct 2024
Decentralized Federated Learning with Gradient Tracking over Time-Varying Directed Networks
Duong Thuy Anh Nguyen
Su Wang
Duong Tung Nguyen
Angelia Nedich
H. Vincent Poor
272
2
0
25 Sep 2024
Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning
Успехи математических наук (Uspekhi Mat. Nauk.), 2024
Dmitry Bylinkin
Kirill Degtyarev
Aleksandr Beznosikov
FedML
224
0
0
22 Sep 2024
Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
Statistics and computing (Stat. Comput.), 2024
Tianyu Xie
Musu Yuan
Minghua Deng
Cheng Zhang
148
3
0
09 Sep 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
International Conference on Machine Learning (ICML), 2024
Wanli Shi
Hongchang Gao
Bin Gu
233
5
0
31 Aug 2024
Zeroth-Order Stochastic Mirror Descent Algorithms for Minimax Excess Risk Optimization
Zhihao Gu
Zi Xu
300
1
0
22 Aug 2024
1
2
3
4
...
16
17
18
Next