ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.06378
  4. Cited By
Monotonic Calibrated Interpolated Look-Up Tables
v1v2v3 (latest)

Monotonic Calibrated Interpolated Look-Up Tables

23 May 2015
Maya R. Gupta
Andrew Cotter
Jan Pfeifer
Konstantin Voevodski
K. Canini
Alexander Mangylov
Wojtek Moczydlowski
A. V. Esbroeck
ArXiv (abs)PDFHTML

Papers citing "Monotonic Calibrated Interpolated Look-Up Tables"

48 / 48 papers shown
Title
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Davide Sartor
Alberto Sinigaglia
Gian Antonio Susto
204
0
0
05 May 2025
Constrained Machine Learning Through Hyperspherical Representation
Constrained Machine Learning Through Hyperspherical Representation
Gaetano Signorelli
Michele Lombardi
66
0
0
11 Apr 2025
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
663
15
0
04 Oct 2023
XClusters: Explainability-first Clustering
XClusters: Explainability-first Clustering
Hyunseung Hwang
Steven Euijong Whang
52
5
0
22 Sep 2022
A computational framework for physics-informed symbolic regression with
  straightforward integration of domain knowledge
A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge
Liron Simon Keren
A. Liberzon
Teddy Lazebnik
112
83
0
13 Sep 2022
Size and depth of monotone neural networks: interpolation and
  approximation
Size and depth of monotone neural networks: interpolation and approximation
Dan Mikulincer
Daniel Reichman
82
7
0
12 Jul 2022
Neural Inverse Transform Sampler
Neural Inverse Transform Sampler
Henry Li
Y. Kluger
52
4
0
22 Jun 2022
Constrained Monotonic Neural Networks
Constrained Monotonic Neural Networks
D. Runje
Sharath M. Shankaranarayana
51
20
0
24 May 2022
Distribution Embedding Networks for Generalization from a Diverse Set of
  Classification Tasks
Distribution Embedding Networks for Generalization from a Diverse Set of Classification Tasks
Lang Liu
M. M. Fard
Sen Zhao
OOD
81
5
0
04 Feb 2022
Global Optimization Networks
Global Optimization Networks
Sen Zhao
Erez Louidor Ilan
Oleksandr Mangylov
Maya R. Gupta
111
6
0
02 Feb 2022
Deep Non-Crossing Quantiles through the Partial Derivative
Deep Non-Crossing Quantiles through the Partial Derivative
Axel Brando
J. Gimeno
Jose A. Rodríguez-Serrano
Jordi Vitrià
144
13
0
30 Jan 2022
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
89
13
0
24 Nov 2021
A Cramér Distance perspective on Quantile Regression based
  Distributional Reinforcement Learning
A Cramér Distance perspective on Quantile Regression based Distributional Reinforcement Learning
Alix Lhéritier
Nicolas Bondoux
38
5
0
01 Oct 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OODCMLBDL
113
17
0
04 Sep 2021
A framework for massive scale personalized promotion
A framework for massive scale personalized promotion
Yitao Shen
Yue Wang
Xingyu Lu
Feng Qi
Jia Yan
Yixiang Mu
Yao Yang
YiFan Peng
Jinjie Gu
107
3
0
27 Aug 2021
Explanations for Monotonic Classifiers
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
93
46
0
01 Jun 2021
Shape-constrained Symbolic Regression -- Improving Extrapolation with
  Prior Knowledge
Shape-constrained Symbolic Regression -- Improving Extrapolation with Prior Knowledge
G. Kronberger
F. O. França
Bogdan Burlacu
C. Haider
M. Kommenda
61
47
0
29 Mar 2021
Regularization Strategies for Quantile Regression
Regularization Strategies for Quantile Regression
Taman Narayan
S. Wang
K. Canini
Maya R. Gupta
38
0
0
09 Feb 2021
Advances in the training, pruning and enforcement of shape constraints
  of Morphological Neural Networks using Tropical Algebra
Advances in the training, pruning and enforcement of shape constraints of Morphological Neural Networks using Tropical Algebra
Nikolaos Dimitriadis
Petros Maragos
102
9
0
15 Nov 2020
Generalized Constraints as A New Mathematical Problem in Artificial
  Intelligence: A Review and Perspective
Generalized Constraints as A New Mathematical Problem in Artificial Intelligence: A Review and Perspective
Bao-Gang Hu
Hanbing Qu
AI4CE
105
1
0
12 Nov 2020
Compensating data shortages in manufacturing with monotonicity knowledge
Compensating data shortages in manufacturing with monotonicity knowledge
Martin von Kurnatowski
J. Schmid
Patrick Link
Rebekka Zache
L. Morand
T. Kraft
Ingo Schmidt
Anke Stoll
44
10
0
29 Oct 2020
Deep Conditional Transformation Models
Deep Conditional Transformation Models
Philipp F. M. Baumann
Torsten Hothorn
David Rügamer
46
29
0
15 Oct 2020
Neural Mixture Distributional Regression
Neural Mixture Distributional Regression
David Rügamer
Florian Pfisterer
B. Bischl
BDL
103
6
0
14 Oct 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Guy Van den Broeck
57
53
0
16 Jun 2020
Arms Race in Adversarial Malware Detection: A Survey
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
103
52
0
24 May 2020
Consistent and Flexible Selectivity Estimation for High-Dimensional Data
Consistent and Flexible Selectivity Estimation for High-Dimensional Data
Yaoshu Wang
Chuan Xiao
Jianbin Qin
Rui Mao
Onizuka Makoto
Wei Wang
Rui Zhang
Yoshiharu Ishikawa
52
14
0
20 May 2020
Human Factors in Model Interpretability: Industry Practices, Challenges,
  and Needs
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
Sungsoo Ray Hong
Jessica Hullman
E. Bertini
HAI
87
195
0
23 Apr 2020
Joint Bilateral Learning for Real-time Universal Photorealistic Style
  Transfer
Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer
Xide Xia
Meng Zhang
Tianfan Xue
Zheng Sun
Hui Fang
Brian Kulis
Jiawen Chen
3DH
80
52
0
23 Apr 2020
Monotonic Cardinality Estimation of Similarity Selection: A Deep
  Learning Approach
Monotonic Cardinality Estimation of Similarity Selection: A Deep Learning Approach
Yaoshu Wang
Chuan Xiao
Jianbin Qin
Xin Cao
Yifang Sun
Wei Wang
Makoto Onizuka
58
25
0
15 Feb 2020
Supervised Quantile Normalization for Low-rank Matrix Approximation
Supervised Quantile Normalization for Low-rank Matrix Approximation
Marco Cuturi
O. Teboul
Jonathan Niles-Weed
Jean-Philippe Vert
34
3
0
08 Feb 2020
Deontological Ethics By Monotonicity Shape Constraints
Deontological Ethics By Monotonicity Shape Constraints
S. Wang
Maya R. Gupta
69
21
0
31 Jan 2020
Signal Combination for Language Identification
Signal Combination for Language Identification
Shengye Wang
Li Wan
Yang Yu
Ignacio López Moreno
67
12
0
21 Oct 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
258
150
0
14 Aug 2019
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of
  Key Ideas and Publications, and Bibliography for Explainable AI
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI
Shane T. Mueller
R. Hoffman
W. Clancey
Abigail Emrey
Gary Klein
XAI
73
285
0
05 Feb 2019
Stop Explaining Black Box Machine Learning Models for High Stakes
  Decisions and Use Interpretable Models Instead
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELMFaML
88
219
0
26 Nov 2018
Optimization with Non-Differentiable Constraints with Applications to
  Fairness, Recall, Churn, and Other Goals
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter
Heinrich Jiang
S. Wang
Taman Narayan
Maya R. Gupta
Seungil You
Karthik Sridharan
87
158
0
11 Sep 2018
Inferring Multidimensional Rates of Aging from Cross-Sectional Data
Inferring Multidimensional Rates of Aging from Cross-Sectional Data
Emma Pierson
Pang Wei Koh
Tatsunori Hashimoto
D. Koller
J. Leskovec
N. Eriksson
Percy Liang
65
10
0
12 Jul 2018
Training Well-Generalizing Classifiers for Fairness Metrics and Other
  Data-Dependent Constraints
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
Andrew Cotter
Maya R. Gupta
Heinrich Jiang
Nathan Srebro
Karthik Sridharan
S. Wang
Blake E. Woodworth
Seungil You
FaML
92
105
0
29 Jun 2018
Proxy Fairness
Proxy Fairness
Maya R. Gupta
Andrew Cotter
M. M. Fard
S. Wang
83
71
0
28 Jun 2018
xGEMs: Generating Examplars to Explain Black-Box Models
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
70
40
0
22 Jun 2018
Interpretable Set Functions
Interpretable Set Functions
Andrew Cotter
Maya R. Gupta
Heinrich Jiang
J. Muller
Taman Narayan
S. Wang
Tao Zhu
74
7
0
31 May 2018
Processing of missing data by neural networks
Processing of missing data by neural networks
Marek Śmieja
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
Przemysław Spurek
AI4TS
88
113
0
18 May 2018
The Case for Learned Index Structures
The Case for Learned Index Structures
Tim Kraska
Alex Beutel
Ed H. Chi
J. Dean
N. Polyzotis
96
1,046
0
04 Dec 2017
Deep Lattice Networks and Partial Monotonic Functions
Deep Lattice Networks and Partial Monotonic Functions
Seungil You
David Ding
K. Canini
Jan Pfeifer
Maya R. Gupta
113
150
0
19 Sep 2017
Interpretable Low-Dimensional Regression via Data-Adaptive Smoothing
Interpretable Low-Dimensional Regression via Data-Adaptive Smoothing
Wesley Tansey
Jesse Thomason
James G. Scott
47
4
0
06 Aug 2017
DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of
  Squares and Semidefinite Optimization
DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization
Amir Ali Ahmadi
Anirudha Majumdar
86
217
0
08 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAIFaML
424
3,828
0
28 Feb 2017
Learning Optimized Risk Scores
Learning Optimized Risk Scores
Berk Ustun
Cynthia Rudin
205
84
0
01 Oct 2016
1