Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.06378
Cited By
v1
v2
v3 (latest)
Monotonic Calibrated Interpolated Look-Up Tables
23 May 2015
Maya R. Gupta
Andrew Cotter
Jan Pfeifer
Konstantin Voevodski
K. Canini
Alexander Mangylov
Wojtek Moczydlowski
A. V. Esbroeck
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Monotonic Calibrated Interpolated Look-Up Tables"
48 / 48 papers shown
Title
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Davide Sartor
Alberto Sinigaglia
Gian Antonio Susto
204
0
0
05 May 2025
Constrained Machine Learning Through Hyperspherical Representation
Gaetano Signorelli
Michele Lombardi
66
0
0
11 Apr 2025
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
663
15
0
04 Oct 2023
XClusters: Explainability-first Clustering
Hyunseung Hwang
Steven Euijong Whang
52
5
0
22 Sep 2022
A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge
Liron Simon Keren
A. Liberzon
Teddy Lazebnik
112
83
0
13 Sep 2022
Size and depth of monotone neural networks: interpolation and approximation
Dan Mikulincer
Daniel Reichman
82
7
0
12 Jul 2022
Neural Inverse Transform Sampler
Henry Li
Y. Kluger
52
4
0
22 Jun 2022
Constrained Monotonic Neural Networks
D. Runje
Sharath M. Shankaranarayana
51
20
0
24 May 2022
Distribution Embedding Networks for Generalization from a Diverse Set of Classification Tasks
Lang Liu
M. M. Fard
Sen Zhao
OOD
81
5
0
04 Feb 2022
Global Optimization Networks
Sen Zhao
Erez Louidor Ilan
Oleksandr Mangylov
Maya R. Gupta
111
6
0
02 Feb 2022
Deep Non-Crossing Quantiles through the Partial Derivative
Axel Brando
J. Gimeno
Jose A. Rodríguez-Serrano
Jordi Vitrià
144
13
0
30 Jan 2022
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
89
13
0
24 Nov 2021
A Cramér Distance perspective on Quantile Regression based Distributional Reinforcement Learning
Alix Lhéritier
Nicolas Bondoux
38
5
0
01 Oct 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
113
17
0
04 Sep 2021
A framework for massive scale personalized promotion
Yitao Shen
Yue Wang
Xingyu Lu
Feng Qi
Jia Yan
Yixiang Mu
Yao Yang
YiFan Peng
Jinjie Gu
109
3
0
27 Aug 2021
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
93
46
0
01 Jun 2021
Shape-constrained Symbolic Regression -- Improving Extrapolation with Prior Knowledge
G. Kronberger
F. O. França
Bogdan Burlacu
C. Haider
M. Kommenda
63
47
0
29 Mar 2021
Regularization Strategies for Quantile Regression
Taman Narayan
S. Wang
K. Canini
Maya R. Gupta
41
0
0
09 Feb 2021
Advances in the training, pruning and enforcement of shape constraints of Morphological Neural Networks using Tropical Algebra
Nikolaos Dimitriadis
Petros Maragos
102
9
0
15 Nov 2020
Generalized Constraints as A New Mathematical Problem in Artificial Intelligence: A Review and Perspective
Bao-Gang Hu
Hanbing Qu
AI4CE
105
1
0
12 Nov 2020
Compensating data shortages in manufacturing with monotonicity knowledge
Martin von Kurnatowski
J. Schmid
Patrick Link
Rebekka Zache
L. Morand
T. Kraft
Ingo Schmidt
Anke Stoll
44
10
0
29 Oct 2020
Deep Conditional Transformation Models
Philipp F. M. Baumann
Torsten Hothorn
David Rügamer
46
29
0
15 Oct 2020
Neural Mixture Distributional Regression
David Rügamer
Florian Pfisterer
B. Bischl
BDL
105
6
0
14 Oct 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Guy Van den Broeck
57
53
0
16 Jun 2020
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
103
52
0
24 May 2020
Consistent and Flexible Selectivity Estimation for High-Dimensional Data
Yaoshu Wang
Chuan Xiao
Jianbin Qin
Rui Mao
Onizuka Makoto
Wei Wang
Rui Zhang
Yoshiharu Ishikawa
52
14
0
20 May 2020
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
Sungsoo Ray Hong
Jessica Hullman
E. Bertini
HAI
87
195
0
23 Apr 2020
Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer
Xide Xia
Meng Zhang
Tianfan Xue
Zheng Sun
Hui Fang
Brian Kulis
Jiawen Chen
3DH
80
52
0
23 Apr 2020
Monotonic Cardinality Estimation of Similarity Selection: A Deep Learning Approach
Yaoshu Wang
Chuan Xiao
Jianbin Qin
Xin Cao
Yifang Sun
Wei Wang
Makoto Onizuka
58
25
0
15 Feb 2020
Supervised Quantile Normalization for Low-rank Matrix Approximation
Marco Cuturi
O. Teboul
Jonathan Niles-Weed
Jean-Philippe Vert
41
3
0
08 Feb 2020
Deontological Ethics By Monotonicity Shape Constraints
S. Wang
Maya R. Gupta
69
21
0
31 Jan 2020
Signal Combination for Language Identification
Shengye Wang
Li Wan
Yang Yu
Ignacio López Moreno
67
12
0
21 Oct 2019
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
258
150
0
14 Aug 2019
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI
Shane T. Mueller
R. Hoffman
W. Clancey
Abigail Emrey
Gary Klein
XAI
76
285
0
05 Feb 2019
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELM
FaML
90
219
0
26 Nov 2018
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter
Heinrich Jiang
S. Wang
Taman Narayan
Maya R. Gupta
Seungil You
Karthik Sridharan
87
158
0
11 Sep 2018
Inferring Multidimensional Rates of Aging from Cross-Sectional Data
Emma Pierson
Pang Wei Koh
Tatsunori Hashimoto
D. Koller
J. Leskovec
N. Eriksson
Percy Liang
65
10
0
12 Jul 2018
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
Andrew Cotter
Maya R. Gupta
Heinrich Jiang
Nathan Srebro
Karthik Sridharan
S. Wang
Blake E. Woodworth
Seungil You
FaML
92
105
0
29 Jun 2018
Proxy Fairness
Maya R. Gupta
Andrew Cotter
M. M. Fard
S. Wang
86
71
0
28 Jun 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
70
40
0
22 Jun 2018
Interpretable Set Functions
Andrew Cotter
Maya R. Gupta
Heinrich Jiang
J. Muller
Taman Narayan
S. Wang
Tao Zhu
79
7
0
31 May 2018
Processing of missing data by neural networks
Marek Śmieja
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
Przemysław Spurek
AI4TS
88
113
0
18 May 2018
The Case for Learned Index Structures
Tim Kraska
Alex Beutel
Ed H. Chi
J. Dean
N. Polyzotis
96
1,046
0
04 Dec 2017
Deep Lattice Networks and Partial Monotonic Functions
Seungil You
David Ding
K. Canini
Jan Pfeifer
Maya R. Gupta
115
150
0
19 Sep 2017
Interpretable Low-Dimensional Regression via Data-Adaptive Smoothing
Wesley Tansey
Jesse Thomason
James G. Scott
47
4
0
06 Aug 2017
DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization
Amir Ali Ahmadi
Anirudha Majumdar
88
217
0
08 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
424
3,828
0
28 Feb 2017
Learning Optimized Risk Scores
Berk Ustun
Cynthia Rudin
205
84
0
01 Oct 2016
1