Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1510.09142
Cited By
Learning Continuous Control Policies by Stochastic Value Gradients
30 October 2015
N. Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Continuous Control Policies by Stochastic Value Gradients"
50 / 337 papers shown
Kernel-based diffusion approximated Markov decision processes for autonomous navigation and control on unstructured terrains
Junhong Xu
Kai-Li Yin
Zheng Chen
Jason M. Gregory
Ethan Stump
Lantao Liu
330
4
0
16 Nov 2021
Physics-informed neural networks via stochastic Hamiltonian dynamics learning
Minh Nguyen
Chandrajit Bajaj
145
1
0
15 Nov 2021
Procedural Generalization by Planning with Self-Supervised World Models
International Conference on Learning Representations (ICLR), 2021
Ankesh Anand
Jacob Walker
Yazhe Li
Eszter Vértes
Julian Schrittwieser
Sherjil Ozair
T. Weber
Jessica B. Hamrick
188
34
0
02 Nov 2021
Fully Distributed Actor-Critic Architecture for Multitask Deep Reinforcement Learning
John Harwell
Angel Sylvester
Aleksi Tukiainen
Enrique Munoz de Cote
232
4
0
23 Oct 2021
Gradient-Based Mixed Planning with Symbolic and Numeric Action Parameters
Kebing Jin
H. Zhuo
Zhanhao Xiao
Hai Wan
Subbarao Kambhampati
290
10
0
19 Oct 2021
Evaluating model-based planning and planner amortization for continuous control
Arunkumar Byravan
Leonard Hasenclever
Piotr Trochim
M. Berk Mirza
Alessandro Davide Ialongo
...
Jost Tobias Springenberg
A. Abdolmaleki
N. Heess
J. Merel
Martin Riedmiller
172
18
0
07 Oct 2021
Learning Dynamics Models for Model Predictive Agents
M. Lutter
Leonard Hasenclever
Arunkumar Byravan
Gabriel Dulac-Arnold
Piotr Trochim
N. Heess
J. Merel
Yuval Tassa
AI4CE
214
30
0
29 Sep 2021
Urban Driver: Learning to Drive from Real-world Demonstrations Using Policy Gradients
Conference on Robot Learning (CoRL), 2021
Oliver Scheel
Luca Bergamini
Maciej Wołczyk
Bla.zej Osiñski
Peter Ondruska
195
147
0
27 Sep 2021
Collect & Infer -- a fresh look at data-efficient Reinforcement Learning
Conference on Robot Learning (CoRL), 2021
Martin Riedmiller
Jost Tobias Springenberg
Agrim Gupta
N. Heess
OffRL
180
21
0
23 Aug 2021
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
Andrea Zanette
Martin J. Wainwright
Emma Brunskill
OffRL
314
132
0
19 Aug 2021
A general class of surrogate functions for stable and efficient reinforcement learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Sharan Vaswani
Olivier Bachem
Simone Totaro
Robert Mueller
Shivam Garg
Matthieu Geist
Marlos C. Machado
Pablo Samuel Castro
Nicolas Le Roux
OffRL
321
21
0
12 Aug 2021
Physics-informed Dyna-Style Model-Based Deep Reinforcement Learning for Dynamic Control
Proceedings of the Royal Society A (Proc. R. Soc. A), 2021
Xin-Yang Liu
Jian-Xun Wang
AI4CE
311
49
0
31 Jul 2021
High-Accuracy Model-Based Reinforcement Learning, a Survey
Artificial Intelligence Review (AIR), 2021
Aske Plaat
W. Kosters
Mike Preuss
OffRL
162
46
0
17 Jul 2021
A Unified Off-Policy Evaluation Approach for General Value Function
Tengyu Xu
Zhuoran Yang
Zhaoran Wang
Yingbin Liang
OffRL
189
2
0
06 Jul 2021
Goal-Conditioned Reinforcement Learning with Imagined Subgoals
Elliot Chane-Sane
Cordelia Schmid
Ivan Laptev
276
167
0
01 Jul 2021
Mix and Mask Actor-Critic Methods
Dom Huh
77
1
0
24 Jun 2021
Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL
Catherine Cang
Aravind Rajeswaran
Pieter Abbeel
Michael Laskin
OffRL
145
31
0
16 Jun 2021
Bayesian Bellman Operators
Neural Information Processing Systems (NeurIPS), 2021
M. Fellows
Kristian Hartikainen
Shimon Whiteson
OffRL
210
18
0
09 Jun 2021
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Neural Information Processing Systems (NeurIPS), 2021
Michael Janner
Qiyang Li
Sergey Levine
OffRL
684
794
0
03 Jun 2021
Hierarchical Representation Learning for Markov Decision Processes
Lorenzo Steccanella
Simone Totaro
Anders Jonsson
229
6
0
03 Jun 2021
From Motor Control to Team Play in Simulated Humanoid Football
Siqi Liu
Guy Lever
Zhe Wang
J. Merel
S. M. Ali Eslami
...
Tuomas Haarnoja
Brendan D. Tracey
K. Tuyls
T. Graepel
N. Heess
275
150
0
25 May 2021
Acting upon Imagination: when to trust imagined trajectories in model based reinforcement learning
Adrian Remonda
Eduardo E. Veas
Granit Luzhnica
262
4
0
12 May 2021
Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward Model
Lingwei Peng
Hui Qian
Zhebang Shen
Chao Zhang
Fei Li
138
2
0
08 May 2021
UVIP: Model-Free Approach to Evaluate Reinforcement Learning Algorithms
Denis Belomestny
I. Levin
Eric Moulines
A. Naumov
OffRL
203
0
0
05 May 2021
Discovering Diverse Athletic Jumping Strategies
ACM Transactions on Graphics (TOG), 2021
Zhiqi Yin
Zeshi Yang
M. van de Panne
KangKang Yin
219
53
0
02 May 2021
Model-aided Deep Reinforcement Learning for Sample-efficient UAV Trajectory Design in IoT Networks
Global Communications Conference (GLOBECOM), 2021
Omid Esrafilian
Harald Bayerlein
David Gesbert
146
6
0
21 Apr 2021
MBRL-Lib: A Modular Library for Model-based Reinforcement Learning
Luis Pineda
Brandon Amos
Amy Zhang
Nathan Lambert
Roberto Calandra
OffRL
322
52
0
20 Apr 2021
Learning to Reweight Imaginary Transitions for Model-Based Reinforcement Learning
AAAI Conference on Artificial Intelligence (AAAI), 2021
Wenzhen Huang
Qiyue Yin
Junge Zhang
Kaiqi Huang
129
3
0
09 Apr 2021
Scalable Visual Attribute Extraction through Hidden Layers of a Residual ConvNet
Andres Baloian
Garrett A. Warnell
J. M. Saavedra
FAtt
189
7
0
31 Mar 2021
Solving Heterogeneous General Equilibrium Economic Models with Deep Reinforcement Learning
Edward W. Hill
M. Bardoscia
A. Turrell
134
31
0
31 Mar 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
292
2
0
26 Mar 2021
Adversarial Imitation Learning with Trajectorial Augmentation and Correction
IEEE International Conference on Robotics and Automation (ICRA), 2021
Dafni Antotsiou
C. Ciliberto
Tae-Kyun Kim
154
12
0
25 Mar 2021
Discriminator Augmented Model-Based Reinforcement Learning
Behzad Haghgoo
Allan Zhou
Archit Sharma
Chelsea Finn
OffRL
156
3
0
24 Mar 2021
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
International Conference on Learning Representations (ICLR), 2021
Benjamin Eysenbach
Sergey Levine
OOD
294
224
0
10 Mar 2021
Model-free Policy Learning with Reward Gradients
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Qingfeng Lan
Samuele Tosatto
Homayoon Farrahi
Rupam Mahmood
322
7
0
09 Mar 2021
Improved Regret Bound and Experience Replay in Regularized Policy Iteration
International Conference on Machine Learning (ICML), 2021
N. Lazić
Dong Yin
Yasin Abbasi-Yadkori
Csaba Szepesvári
OffRL
128
19
0
25 Feb 2021
Mixed Policy Gradient: off-policy reinforcement learning driven jointly by data and model
Yang Guan
Jingliang Duan
Shengbo Eben Li
Jie Li
Jianyu Chen
B. Cheng
OffRL
162
12
0
23 Feb 2021
Decaying Clipping Range in Proximal Policy Optimization
International Symposium on Applied Computational Intelligence and Informatics (SACI), 2021
Mónika Farsang
Luca Szegletes
OffRL
207
8
0
20 Feb 2021
Measuring Progress in Deep Reinforcement Learning Sample Efficiency
Florian E. Dorner
139
13
0
09 Feb 2021
OffCon
3
^3
3
: What is state of the art anyway?
Philip J. Ball
Stephen J. Roberts
OffRL
169
8
0
27 Jan 2021
Portfolio Optimization with 2D Relative-Attentional Gated Transformer
Tae Wan Kim
Matloob Khushi
AI4TS
105
13
0
27 Dec 2020
Learning How to Solve Bubble Ball
Conference on Learning for Dynamics & Control (L4DC), 2020
Hotae Lee
Monimoy Bujarbaruah
Francesco Borrelli
AI4CE
73
0
0
20 Nov 2020
Counterfactual Credit Assignment in Model-Free Reinforcement Learning
International Conference on Machine Learning (ICML), 2020
Thomas Mesnard
T. Weber
Fabio Viola
S. Thakoor
Alaa Saade
...
A. Guez
Éric Moulines
Marcus Hutter
Lars Buesing
Rémi Munos
CML
OffRL
241
67
0
18 Nov 2020
On the role of planning in model-based deep reinforcement learning
Jessica B. Hamrick
A. Friesen
Feryal M. P. Behbahani
A. Guez
Fabio Viola
Sims Witherspoon
Thomas W. Anthony
Lars Buesing
Petar Velickovic
T. Weber
OffRL
367
72
0
08 Nov 2020
Bayes-Adaptive Deep Model-Based Policy Optimisation
Tai Hoang
Ngo Anh Vien
BDL
250
2
0
29 Oct 2020
Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent Populations
Kalesha Bullard
Franziska Meier
Douwe Kiela
Joelle Pineau
Jakob N. Foerster
188
17
0
29 Oct 2020
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Michael Janner
Igor Mordatch
Sergey Levine
AI4CE
369
44
0
27 Oct 2020
Behavior Priors for Efficient Reinforcement Learning
Journal of machine learning research (JMLR), 2020
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
242
46
0
27 Oct 2020
Bridging Imagination and Reality for Model-Based Deep Reinforcement Learning
Guangxiang Zhu
Minghao Zhang
Honglak Lee
Chongjie Zhang
OffRL
322
21
0
23 Oct 2020
Iterative Amortized Policy Optimization
Neural Information Processing Systems (NeurIPS), 2020
Joseph Marino
Alexandre Piché
Alessandro Davide Ialongo
Yisong Yue
OffRL
256
23
0
20 Oct 2020
Previous
1
2
3
4
5
6
7
Next
Page 3 of 7