ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.09142
  4. Cited By
Learning Continuous Control Policies by Stochastic Value Gradients

Learning Continuous Control Policies by Stochastic Value Gradients

30 October 2015
N. Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
ArXiv (abs)PDFHTML

Papers citing "Learning Continuous Control Policies by Stochastic Value Gradients"

50 / 337 papers shown
Hierarchical visuomotor control of humanoids
Hierarchical visuomotor control of humanoidsInternational Conference on Learning Representations (ICLR), 2018
J. Merel
Arun Ahuja
Vu Pham
S. Tunyasuvunakool
Siqi Liu
Dhruva Tirumala
N. Heess
Greg Wayne
261
99
0
23 Nov 2018
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy SearchInternational Conference on Learning Representations (ICLR), 2018
Lars Buesing
T. Weber
Yori Zwols
S. Racanière
A. Guez
Jean-Baptiste Lespiau
N. Heess
CML
224
149
0
15 Nov 2018
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
751
58
0
03 Nov 2018
Differentiable MPC for End-to-end Planning and Control
Differentiable MPC for End-to-end Planning and Control
Brandon Amos
I. D. Rodriguez
Jacob Sacks
Byron Boots
J. Zico Kolter
340
425
0
31 Oct 2018
Hierarchical Approaches for Reinforcement Learning in Parameterized
  Action Space
Hierarchical Approaches for Reinforcement Learning in Parameterized Action Space
E. Wei
Drew Wicke
S. Luke
BDL
132
36
0
23 Oct 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLMOffRL
361
143
0
15 Oct 2018
Tangent: Automatic differentiation using source-code transformation for
  dynamically typed array programming
Tangent: Automatic differentiation using source-code transformation for dynamically typed array programmingNeural Information Processing Systems (NeurIPS), 2018
B. V. Merrienboer
D. Moldovan
Alexander B. Wiltschko
211
33
0
25 Sep 2018
Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent
  Reinforcement Learning
Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning
Jun Feng
Heng Li
Shiyu Huang
Shichen Liu
Wenwu Ou
Zhirong Wang
Xiaoyan Zhu
147
73
0
17 Sep 2018
Model-Based Reinforcement Learning via Meta-Policy Optimization
Model-Based Reinforcement Learning via Meta-Policy Optimization
I. Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
161
243
0
14 Sep 2018
Model-Based Regularization for Deep Reinforcement Learning with
  Transcoder Networks
Model-Based Regularization for Deep Reinforcement Learning with Transcoder Networks
Felix Leibfried
Peter Vrancx
OffRL
196
7
0
06 Sep 2018
SOLAR: Deep Structured Representations for Model-Based Reinforcement
  Learning
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang
Sharad Vikram
Laura M. Smith
Pieter Abbeel
Matthew J. Johnson
Sergey Levine
OffRL
270
42
0
28 Aug 2018
Structured Neural Network Dynamics for Model-based Control
Structured Neural Network Dynamics for Model-based Control
Alexander Broad
Ian Abraham
Todd Murphey
B. Argall
94
6
0
03 Aug 2018
Deterministic Policy Gradients With General State Transitions
Deterministic Policy Gradients With General State Transitions
Qingpeng Cai
Ling Pan
Pingzhong Tang
OffRL
141
2
0
10 Jul 2018
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value
  Expansion
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value ExpansionNeural Information Processing Systems (NeurIPS), 2018
Jacob Buckman
Danijar Hafner
George Tucker
E. Brevdo
Honglak Lee
308
351
0
04 Jul 2018
Guided evolutionary strategies: Augmenting random search with surrogate
  gradients
Guided evolutionary strategies: Augmenting random search with surrogate gradients
Niru Maheswaranathan
Luke Metz
George Tucker
Dami Choi
Jascha Narain Sohl-Dickstein
274
22
0
26 Jun 2018
Maximum a Posteriori Policy Optimisation
Maximum a Posteriori Policy Optimisation
A. Abdolmaleki
Jost Tobias Springenberg
Yuval Tassa
Rémi Munos
N. Heess
Martin Riedmiller
202
528
0
14 Jun 2018
Boredom-driven curious learning by Homeo-Heterostatic Value Gradients
Boredom-driven curious learning by Homeo-Heterostatic Value Gradients
Yen Yu
A. Chang
Ryota Kanai
97
10
0
05 Jun 2018
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNNAI4CEPINNOCL
468
636
0
04 Jun 2018
Learning Real-World Robot Policies by Dreaming
Learning Real-World Robot Policies by Dreaming
A. Piergiovanni
Alan Wu
Michael S. Ryoo
166
33
0
20 May 2018
Episodic Memory Deep Q-Networks
Episodic Memory Deep Q-Networks
Zichuan Lin
Tianqi Zhao
Guangwen Yang
Lintao Zhang
OffRL
130
93
0
19 May 2018
Deep Reinforcement Learning to Acquire Navigation Skills for
  Wheel-Legged Robots in Complex Environments
Deep Reinforcement Learning to Acquire Navigation Skills for Wheel-Legged Robots in Complex Environments
Xi Chen
Ali Ghadirzadeh
John Folkesson
Patric Jensfelt
206
45
0
27 Apr 2018
Lipschitz Continuity in Model-based Reinforcement Learning
Lipschitz Continuity in Model-based Reinforcement LearningInternational Conference on Machine Learning (ICML), 2018
Kavosh Asadi
Dipendra Kumar Misra
Michael L. Littman
KELM
315
166
0
19 Apr 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
245
547
0
18 Apr 2018
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
Anirudh Goyal
Philemon Brakel
W. Fedus
Soumye Singhal
Timothy Lillicrap
Sergey Levine
Hugo Larochelle
Yoshua Bengio
OffRL
342
69
0
02 Apr 2018
Synthesizing Neural Network Controllers with Probabilistic Model based
  Reinforcement Learning
Synthesizing Neural Network Controllers with Probabilistic Model based Reinforcement Learning
J. A. G. Higuera
David Meger
Gregory Dudek
BDL
175
40
0
06 Mar 2018
Smoothed Action Value Functions for Learning Gaussian Policies
Smoothed Action Value Functions for Learning Gaussian Policies
Ofir Nachum
Mohammad Norouzi
George Tucker
Dale Schuurmans
258
30
0
06 Mar 2018
Model-Based Value Estimation for Efficient Model-Free Reinforcement
  Learning
Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning
Vladimir Feinberg
Alvin Wan
Ion Stoica
Sai Li
Joseph E. Gonzalez
Sergey Levine
OffRL
321
334
0
28 Feb 2018
Model-Ensemble Trust-Region Policy Optimization
Model-Ensemble Trust-Region Policy OptimizationInternational Conference on Learning Representations (ICLR), 2018
Thanard Kurutach
I. Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
286
474
0
28 Feb 2018
Learning by Playing - Solving Sparse Reward Tasks from Scratch
Learning by Playing - Solving Sparse Reward Tasks from ScratchInternational Conference on Machine Learning (ICML), 2018
Martin Riedmiller
Agrim Gupta
Thomas Lampe
Michael Neunert
Jonas Degrave
T. Wiele
Volodymyr Mnih
N. Heess
Jost Tobias Springenberg
312
480
0
28 Feb 2018
The Mirage of Action-Dependent Baselines in Reinforcement Learning
The Mirage of Action-Dependent Baselines in Reinforcement LearningInternational Conference on Machine Learning (ICML), 2018
George Tucker
Surya Bhupatiraju
S. Gu
Richard Turner
Zoubin Ghahramani
Sergey Levine
OffRL
294
137
0
27 Feb 2018
Reinforcement and Imitation Learning for Diverse Visuomotor Skills
Reinforcement and Imitation Learning for Diverse Visuomotor Skills
Yuke Zhu
Ziyun Wang
J. Merel
Andrei A. Rusu
Tom Erez
...
S. Tunyasuvunakool
János Kramár
R. Hadsell
Nando de Freitas
N. Heess
SSL
358
333
0
26 Feb 2018
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Temporal Difference Models: Model-Free Deep RL for Model-Based ControlInternational Conference on Learning Representations (ICLR), 2018
Vitchyr H. Pong
S. Gu
Murtaza Dalal
Sergey Levine
OffRL
302
254
0
25 Feb 2018
Fourier Policy Gradients
Fourier Policy Gradients
M. Fellows
K. Ciosek
Shimon Whiteson
164
15
0
19 Feb 2018
Learning Parametric Closed-Loop Policies for Markov Potential Games
Learning Parametric Closed-Loop Policies for Markov Potential Games
Sergio Valcarcel Macua
Javier Zazo
S. Zazo
131
48
0
03 Feb 2018
Pretraining Deep Actor-Critic Reinforcement Learning Algorithms With
  Expert Demonstrations
Pretraining Deep Actor-Critic Reinforcement Learning Algorithms With Expert Demonstrations
Xiaoqin Zhang
Huimin Ma
OffRL
315
39
0
31 Jan 2018
Model-Based Action Exploration for Learning Dynamic Motion Skills
Model-Based Action Exploration for Learning Dynamic Motion Skills
Glen Berseth
M. van de Panne
108
0
0
11 Jan 2018
Expected Policy Gradients for Reinforcement Learning
Expected Policy Gradients for Reinforcement Learning
K. Ciosek
Shimon Whiteson
296
60
0
10 Jan 2018
Building Generalizable Agents with a Realistic and Rich 3D Environment
Building Generalizable Agents with a Realistic and Rich 3D Environment
Yi Wu
Yuxin Wu
Georgia Gkioxari
Yuandong Tian
3DV
490
353
0
07 Jan 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
2.5K
10,124
0
04 Jan 2018
Deterministic Policy Optimization by Combining Pathwise and Score
  Function Estimators for Discrete Action Spaces
Deterministic Policy Optimization by Combining Pathwise and Score Function Estimators for Discrete Action Spaces
Daniel Levy
Stefano Ermon
108
4
0
21 Nov 2017
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Marc Lanctot
V. Zambaldi
A. Gruslys
Angeliki Lazaridou
K. Tuyls
Julien Perolat
David Silver
T. Graepel
354
687
0
02 Nov 2017
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep
  Reinforcement Learning
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep Reinforcement Learning
Gregory Farquhar
Tim Rocktaschel
Maximilian Igl
Shimon Whiteson
OffRL
222
71
0
31 Oct 2017
Flow: A Modular Learning Framework for Mixed Autonomy Traffic
Flow: A Modular Learning Framework for Mixed Autonomy Traffic
Cathy Wu
Abdul Rahman Kreidieh
Kanaad Parvate
Eugene Vinitsky
Alexandre M. Bayen
299
198
0
16 Oct 2017
Expanding Motor Skills through Relay Neural Networks
Expanding Motor Skills through Relay Neural Networks
Visak C. V. Kumar
Sehoon Ha
Chenxi Liu
54
2
0
22 Sep 2017
MBMF: Model-Based Priors for Model-Free Reinforcement Learning
MBMF: Model-Based Priors for Model-Free Reinforcement Learning
Somil Bansal
Roberto Calandra
Kurtland Chua
Sergey Levine
Claire Tomlin
OffRL
224
38
0
10 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
390
2,830
0
19 Aug 2017
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with
  Model-Free Fine-Tuning
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-TuningIEEE International Conference on Robotics and Automation (ICRA), 2017
Anusha Nagabandi
G. Kahn
R. Fearing
Sergey Levine
343
1,038
0
08 Aug 2017
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
317
436
0
26 Jul 2017
Learning model-based planning from scratch
Learning model-based planning from scratch
Razvan Pascanu
Yujia Li
Oriol Vinyals
N. Heess
Lars Buesing
S. Racanière
David P. Reichert
T. Weber
Daan Wierstra
Peter W. Battaglia
LM&Ro
220
99
0
19 Jul 2017
ADAPT: Zero-Shot Adaptive Policy Transfer for Stochastic Dynamical
  Systems
ADAPT: Zero-Shot Adaptive Policy Transfer for Stochastic Dynamical Systems
James Harrison
Animesh Garg
Boris Ivanovic
Yuke Zhu
Silvio Savarese
Li Fei-Fei
Marco Pavone
177
26
0
15 Jul 2017
Previous
1234567
Next