ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.09142
  4. Cited By
Learning Continuous Control Policies by Stochastic Value Gradients

Learning Continuous Control Policies by Stochastic Value Gradients

30 October 2015
N. Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
ArXivPDFHTML

Papers citing "Learning Continuous Control Policies by Stochastic Value Gradients"

50 / 329 papers shown
Title
Deterministic Value-Policy Gradients
Deterministic Value-Policy Gradients
Qingpeng Cai
L. Pan
Pingzhong Tang
29
1
0
09 Sep 2019
DeepHealth: Review and challenges of artificial intelligence in health
  informatics
DeepHealth: Review and challenges of artificial intelligence in health informatics
Gloria Hyunjung Kwak
Pan Hui
SyDa
33
26
0
01 Sep 2019
Deep Reinforcement Learning for Clinical Decision Support: A Brief
  Survey
Deep Reinforcement Learning for Clinical Decision Support: A Brief Survey
Siqi Liu
K. Ngiam
Mengling Feng
LM&MA
OffRL
22
18
0
22 Jul 2019
Benchmarking Model-Based Reinforcement Learning
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
20
359
0
03 Jul 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
30
27
0
26 Jun 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
400
0
25 Jun 2019
Exploring Model-based Planning with Policy Networks
Exploring Model-based Planning with Policy Networks
Tingwu Wang
Jimmy Ba
31
147
0
20 Jun 2019
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
25
933
0
19 Jun 2019
Robust Reinforcement Learning for Continuous Control with Model
  Misspecification
Robust Reinforcement Learning for Continuous Control with Model Misspecification
D. Mankowitz
Nir Levine
Rae Jeong
Yuanyuan Shi
Jackie Kay
A. Abdolmaleki
Jost Tobias Springenberg
Timothy A. Mann
Todd Hester
Martin Riedmiller
OOD
14
118
0
18 Jun 2019
Direct Policy Gradients: Direct Optimization of Policies in Discrete
  Action Spaces
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces
Guy Lorberbom
Chris J. Maddison
N. Heess
Tamir Hazan
Daniel Tarlow
18
8
0
14 Jun 2019
Improving Exploration in Soft-Actor-Critic with Normalizing Flows
  Policies
Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies
Patrick Nadeem Ward
Ariella Smofsky
A. Bose
6
58
0
06 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,295
0
06 Jun 2019
Harnessing Reinforcement Learning for Neural Motion Planning
Harnessing Reinforcement Learning for Neural Motion Planning
Tom Jurgenson
Aviv Tamar
OOD
22
64
0
01 Jun 2019
On the Generalization Gap in Reparameterizable Reinforcement Learning
On the Generalization Gap in Reparameterizable Reinforcement Learning
Huan Wang
Stephan Zheng
Caiming Xiong
R. Socher
17
39
0
29 May 2019
MQLV: Optimal Policy of Money Management in Retail Banking with
  Q-Learning
MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning
Jérémy Charlier
Gaston Ormazabal
R. State
Jean Hilger
OffRL
17
3
0
24 May 2019
Random Expert Distillation: Imitation Learning via Expert Policy Support
  Estimation
Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation
Ruohan Wang
C. Ciliberto
P. Amadori
Y. Demiris
8
62
0
16 May 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
31
127
0
15 May 2019
Fast Skill Learning for Variable Compliance Robotic Assembly
Fast Skill Learning for Variable Compliance Robotic Assembly
Tianyu Ren
Yunfei Dong
Dan Wu
Ken Chen
26
2
0
11 May 2019
Do Autonomous Agents Benefit from Hearing?
Do Autonomous Agents Benefit from Hearing?
Abraham Woubie
Anssi Kanervisto
Janne Karttunen
Ville Hautamaki
9
8
0
10 May 2019
Information asymmetry in KL-regularized RL
Information asymmetry in KL-regularized RL
Alexandre Galashov
Siddhant M. Jayakumar
Leonard Hasenclever
Dhruva Tirumala
Jonathan Richard Schwarz
Guillaume Desjardins
Wojciech M. Czarnecki
Yee Whye Teh
Razvan Pascanu
N. Heess
OffRL
22
102
0
03 May 2019
Stochastic Lipschitz Q-Learning
Xu Zhu
12
4
0
24 Apr 2019
Only Relevant Information Matters: Filtering Out Noisy Samples to Boost
  RL
Only Relevant Information Matters: Filtering Out Noisy Samples to Boost RL
Yannis Flet-Berliac
Philippe Preux
11
2
0
08 Apr 2019
Structured agents for physical construction
Structured agents for physical construction
V. Bapst
Alvaro Sanchez-Gonzalez
Carl Doersch
Kimberly L. Stachenfeld
Pushmeet Kohli
Peter W. Battaglia
Jessica B. Hamrick
AI4CE
30
99
0
05 Apr 2019
Multitask Soft Option Learning
Multitask Soft Option Learning
Maximilian Igl
Andrew Gambardella
Jinke He
Nantas Nardelli
N. Siddharth
Wendelin Bohmer
Shimon Whiteson
22
26
0
01 Apr 2019
Meta-Learning surrogate models for sequential decision making
Meta-Learning surrogate models for sequential decision making
Alexandre Galashov
Jonathan Richard Schwarz
Hyunjik Kim
M. Garnelo
D. Saxton
Pushmeet Kohli
S. M. Ali Eslami
Yee Whye Teh
BDL
OffRL
28
26
0
28 Mar 2019
Constructing Parsimonious Analytic Models for Dynamic Systems via
  Symbolic Regression
Constructing Parsimonious Analytic Models for Dynamic Systems via Symbolic Regression
Erik Derner
Jiří Kubalík
N. Ancona
Robert Babuška
13
9
0
27 Mar 2019
Exploiting Hierarchy for Learning and Transfer in KL-regularized RL
Exploiting Hierarchy for Learning and Transfer in KL-regularized RL
Dhruva Tirumala
Hyeonwoo Noh
Alexandre Galashov
Leonard Hasenclever
Arun Ahuja
Greg Wayne
Razvan Pascanu
Yee Whye Teh
N. Heess
OffRL
16
45
0
18 Mar 2019
Dyna-AIL : Adversarial Imitation Learning by Planning
Dyna-AIL : Adversarial Imitation Learning by Planning
Vaibhav Saxena
Srinivasan Sivanandan
Pulkit Mathur
11
1
0
08 Mar 2019
Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space
Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space
Zhou Fan
Ruilong Su
Weinan Zhang
Yong Yu
14
133
0
04 Mar 2019
Model-Based Reinforcement Learning for Atari
Model-Based Reinforcement Learning for Atari
Lukasz Kaiser
Mohammad Babaeizadeh
Piotr Milos
B. Osinski
R. Campbell
...
Sergey Levine
Afroz Mohiuddin
Ryan Sepassi
George Tucker
Henryk Michalewski
OffRL
26
843
0
01 Mar 2019
Emergent Coordination Through Competition
Emergent Coordination Through Competition
Siqi Liu
Guy Lever
J. Merel
S. Tunyasuvunakool
N. Heess
T. Graepel
47
148
0
19 Feb 2019
Simultaneously Learning Vision and Feature-based Control Policies for
  Real-world Ball-in-a-Cup
Simultaneously Learning Vision and Feature-based Control Policies for Real-world Ball-in-a-Cup
Devin Schwab
Tobias Springenberg
M. Martins
Thomas Lampe
Michael Neunert
A. Abdolmaleki
Tim Hertweck
Roland Hafner
F. Nori
Martin Riedmiller
21
22
0
13 Feb 2019
Total stochastic gradient algorithms and applications in reinforcement
  learning
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
28
17
0
05 Feb 2019
Probability Functional Descent: A Unifying Perspective on GANs,
  Variational Inference, and Reinforcement Learning
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu
Jose H. Blanchet
Peter Glynn
GAN
19
26
0
30 Jan 2019
Model-Predictive Policy Learning with Uncertainty Regularization for
  Driving in Dense Traffic
Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic
Mikael Henaff
A. Canziani
Yann LeCun
OOD
28
122
0
08 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
21
45
0
07 Jan 2019
VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for
  Model-based Control
VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for Model-based Control
Xingxing Liang
Qi Wang
Yanghe Feng
Zhong Liu
Jincai Huang
29
5
0
24 Dec 2018
Residual Policy Learning
Residual Policy Learning
Tom Silver
Kelsey R. Allen
J. Tenenbaum
L. Kaelbling
OffRL
26
173
0
15 Dec 2018
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
44
2,371
0
13 Dec 2018
Relative Entropy Regularized Policy Iteration
Relative Entropy Regularized Policy Iteration
A. Abdolmaleki
Jost Tobias Springenberg
Jonas Degrave
Steven Bohez
Yuval Tassa
Dan Belov
N. Heess
Martin Riedmiller
27
72
0
05 Dec 2018
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
88
1,236
0
30 Nov 2018
Neural probabilistic motor primitives for humanoid control
Neural probabilistic motor primitives for humanoid control
J. Merel
Leonard Hasenclever
Alexandre Galashov
Arun Ahuja
Vu Pham
Greg Wayne
Yee Whye Teh
N. Heess
21
156
0
28 Nov 2018
Hierarchical visuomotor control of humanoids
Hierarchical visuomotor control of humanoids
J. Merel
Arun Ahuja
Vu Pham
S. Tunyasuvunakool
Siqi Liu
Dhruva Tirumala
N. Heess
Greg Wayne
42
97
0
23 Nov 2018
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Lars Buesing
T. Weber
Yori Zwols
S. Racanière
A. Guez
Jean-Baptiste Lespiau
N. Heess
CML
37
135
0
15 Nov 2018
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
38
54
0
03 Nov 2018
Differentiable MPC for End-to-end Planning and Control
Differentiable MPC for End-to-end Planning and Control
Brandon Amos
I. D. Rodriguez
Jacob Sacks
Byron Boots
J. Zico Kolter
30
366
0
31 Oct 2018
Hierarchical Approaches for Reinforcement Learning in Parameterized
  Action Space
Hierarchical Approaches for Reinforcement Learning in Parameterized Action Space
E. Wei
Drew Wicke
S. Luke
BDL
22
35
0
23 Oct 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
28
144
0
15 Oct 2018
Tangent: Automatic differentiation using source-code transformation for
  dynamically typed array programming
Tangent: Automatic differentiation using source-code transformation for dynamically typed array programming
B. V. Merrienboer
D. Moldovan
Alexander B. Wiltschko
17
31
0
25 Sep 2018
Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent
  Reinforcement Learning
Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning
Jun Feng
Heng Li
Minlie Huang
Shichen Liu
Wenwu Ou
Zhirong Wang
Xiaoyan Zhu
17
70
0
17 Sep 2018
Previous
1234567
Next