Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 588 papers shown
Title
Last-iterate convergence rates for min-max optimization
Jacob D. Abernethy
Kevin A. Lai
Andre Wibisono
101
74
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
100
194
0
05 Jun 2019
Sparse optimal control of networks with multiplicative noise via policy gradient
Benjamin J. Gravell
Yi Guo
Tyler H. Summers
21
3
0
28 May 2019
Learning robust control for LQR systems with multiplicative noise via policy gradient
Benjamin J. Gravell
Peyman Mohajerin Esfahani
Tyler H. Summers
89
26
0
28 May 2019
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
Yifan Hu
Xin Chen
Niao He
86
36
0
28 May 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
90
27
0
27 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
111
210
0
24 May 2019
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
A. Raghunathan
A. Cherian
Devesh K. Jha
52
21
0
15 May 2019
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
Hao Yu
Rong Jin
73
51
0
10 May 2019
On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms
Nhat Ho
Tianyi Lin
Michael I. Jordan
109
2
0
16 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
106
105
0
15 Apr 2019
Controlling Neural Networks via Energy Dissipation
Michael Möller
Thomas Möllenhoff
Daniel Cremers
70
17
0
05 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
96
101
0
02 Apr 2019
Provable Guarantees for Gradient-Based Meta-Learning
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
142
150
0
27 Feb 2019
A Dictionary-Based Generalization of Robust PCA Part II: Applications to Hyperspectral Demixing
Sirisha Rambhatla
Xingguo Li
Jineng Ren
Jarvis Haupt
46
6
0
26 Feb 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
102
344
0
21 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
80
141
0
15 Feb 2019
An adaptive stochastic optimization algorithm for resource allocation
Xavier Fontaine
Shie Mannor
Vianney Perchet
20
12
0
12 Feb 2019
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions
Adrien B. Taylor
Francis R. Bach
76
64
0
03 Feb 2019
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
K. Tang
MLT
93
118
0
03 Feb 2019
ErasureHead: Distributed Gradient Descent without Delays Using Approximate Gradient Coding
Hongyi Wang
Zachary B. Charles
Dimitris Papailiopoulos
57
55
0
28 Jan 2019
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
94
382
0
27 Jan 2019
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
Zhenxun Zhuang
Ashok Cutkosky
Francesco Orabona
95
5
0
25 Jan 2019
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
73
177
0
25 Dec 2018
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems
Dhruv Malik
A. Pananjady
Kush S. Bhatia
K. Khamaru
Peter L. Bartlett
Martin J. Wainwright
73
199
0
20 Dec 2018
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
105
11
0
10 Dec 2018
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz Condition
Maziar Sanjabi
Meisam Razaviyayn
Jason D. Lee
55
35
0
07 Dec 2018
Inexact SARAH Algorithm for Stochastic Optimization
Lam M. Nguyen
K. Scheinberg
Martin Takáč
88
51
0
25 Nov 2018
On exponential convergence of SGD in non-convex over-parametrized learning
Xinhai Liu
M. Belkin
Yu-Shen Liu
80
103
0
06 Nov 2018
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
82
68
0
25 Oct 2018
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
91
82
0
25 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
104
301
0
16 Oct 2018
Efficient Greedy Coordinate Descent for Composite Problems
Sai Praneeth Karimireddy
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
44
30
0
16 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
114
32
0
05 Oct 2018
Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem Solver
Fred Roosta
Yang Liu
Peng Xu
Michael W. Mahoney
43
15
0
30 Sep 2018
Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural Networks
Ohad Shamir
101
47
0
23 Sep 2018
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
82
71
0
09 Sep 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
80
23
0
22 Aug 2018
Discrete linear-complexity reinforcement learning in continuous action spaces for Q-learning algorithms
P. Tavallali
G. Doran
L. Mandrake
28
0
0
16 Jul 2018
Accelerating likelihood optimization for ICA on real signals
Pierre Ablin
J. Cardoso
Alexandre Gramfort
25
2
0
25 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
83
147
0
20 Jun 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
93
355
0
11 Jun 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
58
298
0
25 May 2018
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
85
298
0
21 May 2018
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions
Mingrui Liu
Xiaoxuan Zhang
Lijun Zhang
Rong Jin
Tianbao Yang
78
25
0
11 May 2018
Frank-Wolfe Splitting via Augmented Lagrangian Method
Gauthier Gidel
Fabian Pedregosa
Simon Lacoste-Julien
55
30
0
09 Apr 2018
Revisiting Decomposable Submodular Function Minimization with Incidence Relations
Pan Li
O. Milenkovic
114
19
0
10 Mar 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
123
183
0
22 Feb 2018
Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization
Yi Zhou
Yingbin Liang
Huishuai Zhang
MLT
83
26
0
19 Feb 2018
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
101
222
0
19 Feb 2018
Previous
1
2
3
...
10
11
12
Next