ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
v1v2v3v4 (latest)

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 588 papers shown
Title
Last-iterate convergence rates for min-max optimization
Last-iterate convergence rates for min-max optimization
Jacob D. Abernethy
Kevin A. Lai
Andre Wibisono
101
74
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
100
194
0
05 Jun 2019
Sparse optimal control of networks with multiplicative noise via policy
  gradient
Sparse optimal control of networks with multiplicative noise via policy gradient
Benjamin J. Gravell
Yi Guo
Tyler H. Summers
21
3
0
28 May 2019
Learning robust control for LQR systems with multiplicative noise via
  policy gradient
Learning robust control for LQR systems with multiplicative noise via policy gradient
Benjamin J. Gravell
Peyman Mohajerin Esfahani
Tyler H. Summers
89
26
0
28 May 2019
Sample Complexity of Sample Average Approximation for Conditional
  Stochastic Optimization
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
Yifan Hu
Xin Chen
Niao He
86
36
0
28 May 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and
  Many New Methods
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
90
27
0
27 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
111
210
0
24 May 2019
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
A. Raghunathan
A. Cherian
Devesh K. Jha
52
21
0
15 May 2019
On the Computation and Communication Complexity of Parallel SGD with
  Dynamic Batch Sizes for Stochastic Non-Convex Optimization
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
Hao Yu
Rong Jin
73
51
0
10 May 2019
On Structured Filtering-Clustering: Global Error Bound and Optimal
  First-Order Algorithms
On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms
Nhat Ho
Tianyi Lin
Michael I. Jordan
109
2
0
16 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion
  and Stochastic Gradient Descent
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
106
105
0
15 Apr 2019
Controlling Neural Networks via Energy Dissipation
Controlling Neural Networks via Energy Dissipation
Michael Möller
Thomas Möllenhoff
Daniel Cremers
70
17
0
05 Apr 2019
Convergence rates for the stochastic gradient descent method for
  non-convex objective functions
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
96
101
0
02 Apr 2019
Provable Guarantees for Gradient-Based Meta-Learning
Provable Guarantees for Gradient-Based Meta-Learning
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
142
150
0
27 Feb 2019
A Dictionary-Based Generalization of Robust PCA Part II: Applications to
  Hyperspectral Demixing
A Dictionary-Based Generalization of Robust PCA Part II: Applications to Hyperspectral Demixing
Sirisha Rambhatla
Xingguo Li
Jineng Ren
Jarvis Haupt
46
6
0
26 Feb 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order
  Methods
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
102
344
0
21 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
80
141
0
15 Feb 2019
An adaptive stochastic optimization algorithm for resource allocation
An adaptive stochastic optimization algorithm for resource allocation
Xavier Fontaine
Shie Mannor
Vianney Perchet
20
12
0
12 Feb 2019
Stochastic first-order methods: non-asymptotic and computer-aided
  analyses via potential functions
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions
Adrien B. Taylor
Francis R. Bach
76
64
0
03 Feb 2019
Stochastic Gradient Descent for Nonconvex Learning without Bounded
  Gradient Assumptions
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
K. Tang
MLT
93
118
0
03 Feb 2019
ErasureHead: Distributed Gradient Descent without Delays Using
  Approximate Gradient Coding
ErasureHead: Distributed Gradient Descent without Delays Using Approximate Gradient Coding
Hongyi Wang
Zachary B. Charles
Dimitris Papailiopoulos
57
55
0
28 Jan 2019
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
94
382
0
27 Jan 2019
Surrogate Losses for Online Learning of Stepsizes in Stochastic
  Non-Convex Optimization
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
Zhenxun Zhuang
Ashok Cutkosky
Francesco Orabona
95
5
0
25 Jan 2019
Overparameterized Nonlinear Learning: Gradient Descent Takes the
  Shortest Path?
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
73
177
0
25 Dec 2018
Derivative-Free Methods for Policy Optimization: Guarantees for Linear
  Quadratic Systems
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems
Dhruv Malik
A. Pananjady
Kush S. Bhatia
K. Khamaru
Peter L. Bartlett
Martin J. Wainwright
73
199
0
20 Dec 2018
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
105
11
0
10 Dec 2018
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz
  Condition
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz Condition
Maziar Sanjabi
Meisam Razaviyayn
Jason D. Lee
55
35
0
07 Dec 2018
Inexact SARAH Algorithm for Stochastic Optimization
Inexact SARAH Algorithm for Stochastic Optimization
Lam M. Nguyen
K. Scheinberg
Martin Takáč
88
51
0
25 Nov 2018
On exponential convergence of SGD in non-convex over-parametrized
  learning
On exponential convergence of SGD in non-convex over-parametrized learning
Xinhai Liu
M. Belkin
Yu-Shen Liu
80
103
0
06 Nov 2018
Uniform Convergence of Gradients for Non-Convex Learning and
  Optimization
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
82
68
0
25 Oct 2018
SpiderBoost and Momentum: Faster Stochastic Variance Reduction
  Algorithms
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
91
82
0
25 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an
  Accelerated Perceptron
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
104
301
0
16 Oct 2018
Efficient Greedy Coordinate Descent for Composite Problems
Efficient Greedy Coordinate Descent for Composite Problems
Sai Praneeth Karimireddy
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
44
30
0
16 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
114
32
0
05 Oct 2018
Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem
  Solver
Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem Solver
Fred Roosta
Yang Liu
Peng Xu
Michael W. Mahoney
43
15
0
30 Sep 2018
Exponential Convergence Time of Gradient Descent for One-Dimensional
  Deep Linear Neural Networks
Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural Networks
Ohad Shamir
101
47
0
23 Sep 2018
SEGA: Variance Reduction via Gradient Sketching
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
82
71
0
09 Sep 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL
  Property
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
80
23
0
22 Aug 2018
Discrete linear-complexity reinforcement learning in continuous action
  spaces for Q-learning algorithms
Discrete linear-complexity reinforcement learning in continuous action spaces for Q-learning algorithms
P. Tavallali
G. Doran
L. Mandrake
28
0
0
16 Jul 2018
Accelerating likelihood optimization for ICA on real signals
Accelerating likelihood optimization for ICA on real signals
Pierre Ablin
J. Cardoso
Alexandre Gramfort
25
2
0
25 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
83
147
0
20 Jun 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
93
355
0
11 Jun 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed
  Learning
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
58
298
0
25 May 2018
On the Convergence of Stochastic Gradient Descent with Adaptive
  Stepsizes
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
85
298
0
21 May 2018
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound
  Conditions
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions
Mingrui Liu
Xiaoxuan Zhang
Lijun Zhang
Rong Jin
Tianbao Yang
78
25
0
11 May 2018
Frank-Wolfe Splitting via Augmented Lagrangian Method
Frank-Wolfe Splitting via Augmented Lagrangian Method
Gauthier Gidel
Fabian Pedregosa
Simon Lacoste-Julien
55
30
0
09 Apr 2018
Revisiting Decomposable Submodular Function Minimization with Incidence
  Relations
Revisiting Decomposable Submodular Function Minimization with Incidence Relations
Pan Li
O. Milenkovic
114
19
0
10 Mar 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
123
183
0
22 Feb 2018
Generalization Error Bounds with Probabilistic Guarantee for SGD in
  Nonconvex Optimization
Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization
Yi Zhou
Yingbin Liang
Huishuai Zhang
MLT
83
26
0
19 Feb 2018
Robust Estimation via Robust Gradient Estimation
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
101
222
0
19 Feb 2018
Previous
123...101112
Next