ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
v1v2v3v4 (latest)

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 602 papers shown
Title
Communication-Censored Distributed Stochastic Gradient Descent
Communication-Censored Distributed Stochastic Gradient Descent
Weiyu Li
Tianyi Chen
Liping Li
Zhaoxian Wu
Qing Ling
64
19
0
09 Sep 2019
Stochastic AUC Maximization with Deep Neural Networks
Stochastic AUC Maximization with Deep Neural Networks
Mingrui Liu
Zhuoning Yuan
Yiming Ying
Tianbao Yang
119
109
0
28 Aug 2019
Proximal gradient flow and Douglas-Rachford splitting dynamics: global
  exponential stability via integral quadratic constraints
Proximal gradient flow and Douglas-Rachford splitting dynamics: global exponential stability via integral quadratic constraints
Sepideh Hassan-Moghaddam
Mihailo R. Jovanović
42
0
0
23 Aug 2019
Towards Better Generalization: BP-SVRG in Training Deep Neural Networks
Towards Better Generalization: BP-SVRG in Training Deep Neural Networks
Hao Jin
Dachao Lin
Zhihua Zhang
ODL
67
2
0
18 Aug 2019
Path Length Bounds for Gradient Descent and Flow
Path Length Bounds for Gradient Descent and Flow
Chirag Gupta
Sivaraman Balakrishnan
Aaditya Ramdas
152
15
0
02 Aug 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and
  Distribution Shift
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
Jason D. Lee
G. Mahajan
239
323
0
01 Aug 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
120
98
0
24 Jul 2019
signADAM: Learning Confidences for Deep Neural Networks
signADAM: Learning Confidences for Deep Neural Networks
Dong Wang
Yicheng Liu
Wenwo Tang
Fanhua Shang
Hongying Liu
Qigong Sun
Licheng Jiao
ODLFedML
39
1
0
21 Jul 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite
  Nonconvex Optimization
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
93
53
0
08 Jul 2019
The Role of Memory in Stochastic Optimization
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
104
32
0
02 Jul 2019
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Oliver Hinder
Aaron Sidford
N. Sohoni
139
76
0
27 Jun 2019
A Stochastic Composite Gradient Method with Incremental Variance
  Reduction
A Stochastic Composite Gradient Method with Incremental Variance Reduction
Junyu Zhang
Lin Xiao
88
69
0
24 Jun 2019
Tensor Canonical Correlation Analysis with Convergence and Statistical
  Guarantees
Tensor Canonical Correlation Analysis with Convergence and Statistical Guarantees
You-Lin Chen
Mladen Kolar
R. Tsay
141
0
0
12 Jun 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
137
40
0
09 Jun 2019
Last-iterate convergence rates for min-max optimization
Last-iterate convergence rates for min-max optimization
Jacob D. Abernethy
Kevin A. Lai
Andre Wibisono
156
74
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
200
203
0
05 Jun 2019
Sparse optimal control of networks with multiplicative noise via policy
  gradient
Sparse optimal control of networks with multiplicative noise via policy gradient
Benjamin J. Gravell
Yi Guo
Tyler H. Summers
33
3
0
28 May 2019
Learning robust control for LQR systems with multiplicative noise via
  policy gradient
Learning robust control for LQR systems with multiplicative noise via policy gradient
Benjamin J. Gravell
Peyman Mohajerin Esfahani
Tyler H. Summers
123
26
0
28 May 2019
Sample Complexity of Sample Average Approximation for Conditional
  Stochastic Optimization
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
Yifan Hu
Xin Chen
Niao He
114
37
0
28 May 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and
  Many New Methods
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
140
27
0
27 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
196
213
0
24 May 2019
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
A. Raghunathan
A. Cherian
Devesh K. Jha
66
22
0
15 May 2019
On the Computation and Communication Complexity of Parallel SGD with
  Dynamic Batch Sizes for Stochastic Non-Convex Optimization
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
Hao Yu
Rong Jin
104
51
0
10 May 2019
On Structured Filtering-Clustering: Global Error Bound and Optimal
  First-Order Algorithms
On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms
Nhat Ho
Tianyi Lin
Michael I. Jordan
154
3
0
16 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion
  and Stochastic Gradient Descent
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
196
108
0
15 Apr 2019
Controlling Neural Networks via Energy Dissipation
Controlling Neural Networks via Energy Dissipation
Michael Möller
Thomas Möllenhoff
Zorah Lähner
119
17
0
05 Apr 2019
Convergence rates for the stochastic gradient descent method for
  non-convex objective functions
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
121
103
0
02 Apr 2019
Provable Guarantees for Gradient-Based Meta-Learning
Provable Guarantees for Gradient-Based Meta-Learning
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
177
152
0
27 Feb 2019
A Dictionary-Based Generalization of Robust PCA Part II: Applications to
  Hyperspectral Demixing
A Dictionary-Based Generalization of Robust PCA Part II: Applications to Hyperspectral Demixing
Sirisha Rambhatla
Xingguo Li
Jineng Ren
Jarvis Haupt
72
6
0
26 Feb 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order
  Methods
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
154
347
0
21 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
91
141
0
15 Feb 2019
An adaptive stochastic optimization algorithm for resource allocation
An adaptive stochastic optimization algorithm for resource allocation
Xavier Fontaine
Shie Mannor
Vianney Perchet
70
13
0
12 Feb 2019
Stochastic first-order methods: non-asymptotic and computer-aided
  analyses via potential functions
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions
Adrien B. Taylor
Francis R. Bach
120
67
0
03 Feb 2019
Stochastic Gradient Descent for Nonconvex Learning without Bounded
  Gradient Assumptions
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
Shengcai Liu
MLT
144
120
0
03 Feb 2019
ErasureHead: Distributed Gradient Descent without Delays Using
  Approximate Gradient Coding
ErasureHead: Distributed Gradient Descent without Delays Using Approximate Gradient Coding
Hongyi Wang
Zachary B. Charles
Dimitris Papailiopoulos
66
55
0
28 Jan 2019
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
149
400
0
27 Jan 2019
Surrogate Losses for Online Learning of Stepsizes in Stochastic
  Non-Convex Optimization
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
Zhenxun Zhuang
Ashok Cutkosky
Francesco Orabona
162
5
0
25 Jan 2019
Overparameterized Nonlinear Learning: Gradient Descent Takes the
  Shortest Path?
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
152
180
0
25 Dec 2018
Derivative-Free Methods for Policy Optimization: Guarantees for Linear
  Quadratic Systems
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems
Dhruv Malik
A. Pananjady
Kush S. Bhatia
K. Khamaru
Peter L. Bartlett
Martin J. Wainwright
130
207
0
20 Dec 2018
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
137
11
0
10 Dec 2018
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz
  Condition
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz Condition
Maziar Sanjabi
Meisam Razaviyayn
Jason D. Lee
85
35
0
07 Dec 2018
Inexact SARAH Algorithm for Stochastic Optimization
Inexact SARAH Algorithm for Stochastic Optimization
Lam M. Nguyen
K. Scheinberg
Martin Takáč
104
52
0
25 Nov 2018
On exponential convergence of SGD in non-convex over-parametrized
  learning
On exponential convergence of SGD in non-convex over-parametrized learning
Xinhai Liu
M. Belkin
Yu-Shen Liu
130
105
0
06 Nov 2018
Uniform Convergence of Gradients for Non-Convex Learning and
  Optimization
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
123
72
0
25 Oct 2018
SpiderBoost and Momentum: Faster Stochastic Variance Reduction
  Algorithms
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
107
82
0
25 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an
  Accelerated Perceptron
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
185
305
0
16 Oct 2018
Efficient Greedy Coordinate Descent for Composite Problems
Efficient Greedy Coordinate Descent for Composite Problems
Sai Praneeth Karimireddy
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
77
30
0
16 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
139
32
0
05 Oct 2018
Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem
  Solver
Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem Solver
Fred Roosta
Yang Liu
Peng Xu
Michael W. Mahoney
139
16
0
30 Sep 2018
Exponential Convergence Time of Gradient Descent for One-Dimensional
  Deep Linear Neural Networks
Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural Networks
Ohad Shamir
129
47
0
23 Sep 2018
Previous
123...10111213
Next