Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 602 papers shown
Title
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
AAML
96
2
0
01 May 2024
Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
Slawek Smyl
Boris N. Oreshkin
Paweł Pełka
Grzegorz Dudek
AI4TS
96
1
0
26 Apr 2024
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
133
11
0
09 Apr 2024
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
Tao Li
Qinghua Tao
Weihao Yan
Zehao Lei
Yingwen Wu
Kun Fang
Mingzhen He
Xiaolin Huang
AAML
157
7
0
30 Mar 2024
The Effectiveness of Local Updates for Decentralized Learning under Data Heterogeneity
Tongle Wu
Ying Sun
85
2
0
23 Mar 2024
Understanding and Improving Training-free Loss-based Diffusion Guidance
Yifei Shen
Xinyang Jiang
Yezhen Wang
Yifan Yang
Dongqi Han
Dongsheng Li
FaML
136
16
0
19 Mar 2024
Friendly Sharpness-Aware Minimization
Tao Li
Pan Zhou
Zhengbao He
Xinwen Cheng
Xiaolin Huang
AAML
116
23
0
19 Mar 2024
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Aaron Mishkin
Ahmed Khaled
Yuanhao Wang
Aaron Defazio
Robert Mansel Gower
180
12
0
06 Mar 2024
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
137
1
0
05 Mar 2024
Error bounds for particle gradient descent, and extensions of the log-Sobolev and Talagrand inequalities
Rocco Caprio
Juan Kuntz
Samuel Power
A. M. Johansen
137
10
0
04 Mar 2024
From Inverse Optimization to Feasibility to ERM
Saurabh Mishra
Anant Raj
Sharan Vaswani
103
3
0
27 Feb 2024
Taming Nonconvex Stochastic Mirror Descent with General Bregman Divergence
Ilyas Fatkhullin
Niao He
88
7
0
27 Feb 2024
Investigating Deep Watermark Security: An Adversarial Transferability Perspective
Biqing Qi
Junqi Gao
Yiang Luo
Jianxing Liu
Ligang Wu
Bowen Zhou
AAML
106
4
0
26 Feb 2024
A Lower Bound for Estimating Fréchet Means
Shayan Hundrieser
B. Eltzner
S. Huckemann
61
2
0
19 Feb 2024
How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization
Andrew Lowy
Jonathan R. Ullman
Stephen J. Wright
139
10
0
17 Feb 2024
An Accelerated Distributed Stochastic Gradient Method with Momentum
Kun-Yen Huang
Shi Pu
Angelia Nedić
113
11
0
15 Feb 2024
Differentially Private Zeroth-Order Methods for Scalable Large Language Model Finetuning
Zhicheng Liu
Jian Lou
Wenxuan Bao
Yihan Hu
Baochun Li
Zhan Qin
K. Ren
164
11
0
12 Feb 2024
Towards Quantifying the Preconditioning Effect of Adam
Rudrajit Das
Naman Agarwal
Sujay Sanghavi
Inderjit S. Dhillon
49
7
0
11 Feb 2024
Federated Learning Can Find Friends That Are Advantageous
N. Tupitsa
Samuel Horváth
Martin Takávc
Eduard A. Gorbunov
FedML
147
2
0
07 Feb 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
81
5
0
07 Feb 2024
Optimal sampling for stochastic and natural gradient descent
Robert Gruhlke
A. Nouy
Philipp Trunschke
82
3
0
05 Feb 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
172
2
0
05 Feb 2024
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Yu-Guan Hsieh
James Thornton
Eugène Ndiaye
Michal Klein
Marco Cuturi
Pierre Ablin
MedIm
126
1
0
05 Feb 2024
On the Complexity of Finite-Sum Smooth Optimization under the Polyak-Łojasiewicz Condition
Yunyan Bai
Yuxing Liu
Luo Luo
92
1
0
04 Feb 2024
Challenges in Training PINNs: A Loss Landscape Perspective
Pratik Rathore
Weimu Lei
Zachary Frangella
Lu Lu
Madeleine Udell
AI4CE
PINN
ODL
137
70
0
02 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
178
6
0
02 Feb 2024
Behind the Myth of Exploration in Policy Gradients
Adrien Bolland
Gaspard Lambrechts
Damien Ernst
192
1
0
31 Jan 2024
Diffusion Stochastic Optimization for Min-Max Problems
H. Cai
Sulaiman A. Alghunaim
Ali H. Sayed
101
3
0
26 Jan 2024
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
Mingyang Yi
Bohan Wang
132
0
0
24 Jan 2024
Efficient Learning in Polyhedral Games via Best Response Oracles
Darshan Chakrabarti
Gabriele Farina
Christian Kroer
80
4
0
06 Dec 2023
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
Rajeeva Laxman Karandikar
M. Vidyasagar
108
11
0
05 Dec 2023
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Junwen Qiu
Xiao Li
Andre Milzarek
181
3
0
02 Dec 2023
Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder Approach
Kai Li
Jingjing Zheng
Xinnan Yuan
W. Ni
Ozgur B. Akan
H. Vincent Poor
AAML
105
19
0
30 Nov 2023
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
315
2
0
29 Nov 2023
Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach
Xinwei Zhang
Zhiqi Bu
Zhiwei Steven Wu
Mingyi Hong
98
9
0
24 Nov 2023
Locally Optimal Descent for Dynamic Stepsize Scheduling
Gilad Yehudai
Alon Cohen
Amit Daniely
Yoel Drori
Tomer Koren
Mariano Schain
130
0
0
23 Nov 2023
Differentially Private Non-Convex Optimization under the KL Condition with Optimal Rates
Michael Menart
Enayat Ullah
Raman Arora
Raef Bassily
Cristóbal Guzmán
109
2
0
22 Nov 2023
Non-Uniform Smoothness for Gradient Descent
A. Berahas
Lindon Roberts
Fred Roosta
102
4
0
15 Nov 2023
A Large Deviations Perspective on Policy Gradient Algorithms
Wouter Jongeneel
Daniel Kuhn
Mengmeng Li
106
1
0
13 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
151
1
0
08 Nov 2023
Stochastic Smoothed Gradient Descent Ascent for Federated Minimax Optimization
Wei Shen
Minhui Huang
Jiawei Zhang
Cong Shen
FedML
164
3
0
02 Nov 2023
AdaSub: Stochastic Optimization Using Second-Order Information in Low-Dimensional Subspaces
João Victor Galvão da Mata
Martin S. Andersen
68
1
0
30 Oct 2023
Controlled Decoding from Language Models
Sidharth Mudgal
Jong Lee
H. Ganapathy
Yaguang Li
Tao Wang
...
Michael Collins
Trevor Strohman
Jilin Chen
Alex Beutel
Ahmad Beirami
208
98
0
25 Oct 2023
DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency for Federated Learning with Static and Streaming Dataset
Weijie Liu
Xiaoxi Zhang
Jingpu Duan
Carlee Joe-Wong
Zhi Zhou
Xu Chen
97
15
0
20 Oct 2023
A connection between Tempering and Entropic Mirror Descent
Nicolas Chopin
F. R. Crucinio
Anna Korba
123
15
0
18 Oct 2023
DPZero: Private Fine-Tuning of Language Models without Backpropagation
Liang Zhang
Bingcong Li
K. K. Thekumparampil
Sewoong Oh
Niao He
140
16
0
14 Oct 2023
Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Geovani Rizk
OOD
96
19
0
24 Sep 2023
Distributionally Time-Varying Online Stochastic Optimization under Polyak-Łojasiewicz Condition with Application in Conditional Value-at-Risk Statistical Learning
Yuen-Man Pun
Farhad Farokhi
Iman Shames
87
3
0
18 Sep 2023
Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity and Last-Iterate Convergence
Jiduan Wu
Anas Barakat
Ilyas Fatkhullin
Niao He
233
7
0
08 Sep 2023
On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation
Jeongyeol Kwon
Dohyun Kwon
Steve Wright
Robert D. Nowak
146
37
0
04 Sep 2023
Previous
1
2
3
4
5
6
...
11
12
13
Next