ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
v1v2v3v4 (latest)

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 602 papers shown
Title
Convergence Analysis of the PAGE Stochastic Algorithm for Convex Finite-Sum Optimization
Convergence Analysis of the PAGE Stochastic Algorithm for Convex Finite-Sum Optimization
Laurent Condat
Peter Richtárik
0
0
0
31 Aug 2025
Tree-Guided Diffusion Planner
Tree-Guided Diffusion Planner
Hyeonseong Jeon
Cheolhong Min
Jaesik Park
4
0
0
29 Aug 2025
Stability and Generalization for Bellman Residuals
Stability and Generalization for Bellman Residuals
Enoch H. Kang
Kyoungseok Jang
OffRL
0
0
0
26 Aug 2025
Predictability Enables Parallelization of Nonlinear State Space Models
Predictability Enables Parallelization of Nonlinear State Space Models
Xavier Gonzalez
Leo Kozachkov
D. Zoltowski
Kenneth L. Clarkson
Scott W. Linderman
4
1
0
22 Aug 2025
Probabilistic Pretraining for Neural Regression
Probabilistic Pretraining for Neural Regression
Boris N. Oreshkin
Shiv Tavker
Dmitry Efimov
UQCVBDL
62
0
0
22 Aug 2025
IAG: Input-aware Backdoor Attack on VLMs for Visual Grounding
IAG: Input-aware Backdoor Attack on VLMs for Visual Grounding
Junxian Li
Beining Xu
Di Zhang
AAML
24
0
0
13 Aug 2025
Learning to optimize with guarantees: a complete characterization of linearly convergent algorithms
Learning to optimize with guarantees: a complete characterization of linearly convergent algorithms
Andrea Martin
I. Manchester
Luca Furieri
8
0
0
01 Aug 2025
From Sublinear to Linear: Fast Convergence in Deep Networks via Locally Polyak-Lojasiewicz Regions
From Sublinear to Linear: Fast Convergence in Deep Networks via Locally Polyak-Lojasiewicz Regions
Agnideep Aich
Ashit Aich
Bruce Wade
31
0
0
29 Jul 2025
Linearly Convergent Algorithms for Nonsmooth Problems with Unknown Smooth Pieces
Linearly Convergent Algorithms for Nonsmooth Problems with Unknown Smooth Pieces
Zhe Zhang
S. Sra
29
0
0
25 Jul 2025
Glocal Smoothness: Line Search can really help!
Glocal Smoothness: Line Search can really help!
Curtis Fox
Aaron Mishkin
Sharan Vaswani
Mark Schmidt
82
2
0
14 Jun 2025
Convergence of Momentum-Based Optimization Algorithms with Time-Varying Parameters
Convergence of Momentum-Based Optimization Algorithms with Time-Varying Parameters
Mathukumalli Vidyasagar
105
0
0
13 Jun 2025
VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning
VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Min-hsiu Hsieh
183
1
0
12 Jun 2025
Sharper Convergence Rates for Nonconvex Optimisation via Reduction Mappings
Evan Markou
Thalaiyasingam Ajanthan
Stephen Gould
79
0
0
10 Jun 2025
Stacey: Promoting Stochastic Steepest Descent via Accelerated $\ell_p$-Smooth Nonconvex Optimization
Stacey: Promoting Stochastic Steepest Descent via Accelerated ℓp\ell_pℓp​-Smooth Nonconvex Optimization
Xinyu Luo
Cedar Site Bai
Bolian Li
Petros Drineas
Ruqi Zhang
Brian Bullins
69
1
0
07 Jun 2025
Enhancing Convergence, Privacy and Fairness for Wireless Personalized Federated Learning: Quantization-Assisted Min-Max Fair Scheduling
Enhancing Convergence, Privacy and Fairness for Wireless Personalized Federated Learning: Quantization-Assisted Min-Max Fair Scheduling
Xiyu Zhao
Qimei Cui
Ziqiang Du
Weicai Li
Xi Yu
Wei Ni
Ji Zhang
Xiaofeng Tao
Ping Zhang
104
0
0
03 Jun 2025
Provable Reinforcement Learning from Human Feedback with an Unknown Link Function
Provable Reinforcement Learning from Human Feedback with an Unknown Link Function
Qining Zhang
Lei Ying
124
0
0
03 Jun 2025
FSNet: Feasibility-Seeking Neural Network for Constrained Optimization with Guarantees
FSNet: Feasibility-Seeking Neural Network for Constrained Optimization with Guarantees
Hoang T. Nguyen
Priya L. Donti
62
0
0
31 May 2025
Convergence of Adam in Deep ReLU Networks via Directional Complexity and Kakeya Bounds
Convergence of Adam in Deep ReLU Networks via Directional Complexity and Kakeya Bounds
Anupama Sridhar
Alexander Johansen
114
0
0
21 May 2025
Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)
Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)
Artem Riabinin
Egor Shulgin
Kaja Gruntkowska
Peter Richtárik
AI4CE
147
3
0
19 May 2025
Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series
Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series
Jiang You
Xiaozhen Wang
Arben Cela
AI4TS
109
0
0
17 May 2025
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
Ziqing Xu
Hancheng Min
Salma Tarmoun
Enrique Mallada
Rene Vidal
144
0
0
16 May 2025
Memory-Efficient Orthogonal Fine-Tuning with Principal Subspace Adaptation
Memory-Efficient Orthogonal Fine-Tuning with Principal Subspace Adaptation
Fei Wu
Jia Hu
Geyong Min
Shiqiang Wang
169
0
0
16 May 2025
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Yuen-Man Pun
Iman Shames
76
0
0
04 May 2025
Towards Trustworthy Federated Learning with Untrusted Participants
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
202
3
0
03 May 2025
Intersectional Divergence: Measuring Fairness in Regression
Intersectional Divergence: Measuring Fairness in Regression
Joe Germino
Nuno Moniz
Nitesh Chawla
FaML
160
0
0
01 May 2025
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
144
0
0
30 Apr 2025
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Matthias Liero
Alexander Mielke
Oliver Tse
Jia Jie Zhu
103
1
0
29 Apr 2025
AlphaGrad: Non-Linear Gradient Normalization Optimizer
AlphaGrad: Non-Linear Gradient Normalization Optimizer
Soham Sane
ODL
191
0
0
22 Apr 2025
FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data
FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data
Yuan Zhou
Jiachen Zhong
Xinli Shi
G. Wen
Xinghuo Yu
FedML
114
0
0
16 Apr 2025
Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
Harsh Vardhan
Xiaofan Yu
Tajana Rosing
A. Mazumdar
FedML
102
0
0
02 Apr 2025
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Hyoungwook Jin
Yoonsu Kim
Dongyun Jung
Seungju Kim
Kiyoon Choi
J. Son
Juho Kim
LRM
168
1
0
01 Apr 2025
Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
A. C. B. D. Oliveira
Leilei Cui
Eduardo Sontag
79
0
0
31 Mar 2025
A stochastic gradient descent algorithm with random search directions
A stochastic gradient descent algorithm with random search directions
Eméric Gbaguidi
ODL
150
0
0
25 Mar 2025
FedTilt: Towards Multi-Level Fairness-Preserving and Robust Federated Learning
FedTilt: Towards Multi-Level Fairness-Preserving and Robust Federated Learning
Binghui Zhang
Luis Mares De La Cruz
Binghui Wang
FedML
96
0
0
15 Mar 2025
Nash Equilibrium Constrained Auto-bidding With Bi-level Reinforcement Learning
Zhiyu Mou
Miao Xu
Rongquan Bai
Zhuoran Yang
Chuan Yu
Jian Xu
Bo Zheng
119
0
0
13 Mar 2025
Sharpness-Aware Minimization: General Analysis and Improved Rates
Dimitris Oikonomou
Nicolas Loizou
131
3
0
04 Mar 2025
Gradient-free stochastic optimization for additive models
Gradient-free stochastic optimization for additive models
A. Akhavan
Alexandre B. Tsybakov
180
0
0
03 Mar 2025
MPO: An Efficient Post-Processing Framework for Mixing Diverse Preference Alignment
MPO: An Efficient Post-Processing Framework for Mixing Diverse Preference Alignment
Tianze Wang
Dongnan Gui
Yifan Hu
Shuhang Lin
Linjun Zhang
163
1
0
25 Feb 2025
Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment
Faster WIND: Accelerating Iterative Best-of-NNN Distillation for LLM Alignment
Tong Yang
Jincheng Mei
H. Dai
Zixin Wen
Shicong Cen
Dale Schuurmans
Yuejie Chi
Bo Dai
170
5
0
20 Feb 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
193
2
0
28 Jan 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
149
0
0
25 Jan 2025
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
Jingxin Zhan
Yuchen Xin
Kaicheng Jin
Zhihua Zhang
187
0
0
19 Jan 2025
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Luiz F. O. Chamon
Mohammad Reza Karimi
Anna Korba
151
5
0
08 Jan 2025
On Penalty-based Bilevel Gradient Descent Method
On Penalty-based Bilevel Gradient Descent Method
Han Shen
Quan-Wu Xiao
Tianyi Chen
223
69
0
08 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
170
2
0
08 Jan 2025
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
Flint Xiaofeng Fan
Cheston Tan
Yew-Soon Ong
Roger Wattenhofer
Wei Tsang Ooi
239
1
0
20 Dec 2024
Causal Invariance Learning via Efficient Optimization of a Nonconvex
  Objective
Causal Invariance Learning via Efficient Optimization of a Nonconvex Objective
Zhenyu Wang
Yifan Hu
Peter Buhlmann
Zijian Guo
246
3
0
16 Dec 2024
FERERO: A Flexible Framework for Preference-Guided Multi-Objective
  Learning
FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning
Lisha Chen
A. F. M. Saif
Yanning Shen
Tianyi Chen
146
3
0
02 Dec 2024
Mirror Descent on Reproducing Kernel Banach Spaces
Akash Kumar
Mikhail Belkin
Parthe Pandit
114
1
0
18 Nov 2024
One-Layer Transformer Provably Learns One-Nearest Neighbor In Context
Zihao Li
Yuan Cao
Cheng Gao
Yihan He
Han Liu
Jason M. Klusowski
Jianqing Fan
Mengdi Wang
MLT
193
8
0
16 Nov 2024
1234...111213
Next