ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
v1v2v3v4 (latest)

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 588 papers shown
Title
Glocal Smoothness: Line Search can really help!
Glocal Smoothness: Line Search can really help!
Curtis Fox
Aaron Mishkin
Sharan Vaswani
Mark Schmidt
31
2
0
14 Jun 2025
Convergence of Momentum-Based Optimization Algorithms with Time-Varying Parameters
Convergence of Momentum-Based Optimization Algorithms with Time-Varying Parameters
Mathukumalli Vidyasagar
56
0
0
13 Jun 2025
VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning
VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Min-hsiu Hsieh
90
0
0
12 Jun 2025
Sharper Convergence Rates for Nonconvex Optimisation via Reduction Mappings
Evan Markou
Thalaiyasingam Ajanthan
Stephen Gould
20
0
0
10 Jun 2025
Stacey: Promoting Stochastic Steepest Descent via Accelerated $\ell_p$-Smooth Nonconvex Optimization
Stacey: Promoting Stochastic Steepest Descent via Accelerated ℓp\ell_pℓp​-Smooth Nonconvex Optimization
Xinyu Luo
Cedar Site Bai
Bolian Li
Petros Drineas
Ruqi Zhang
Brian Bullins
20
0
0
07 Jun 2025
Enhancing Convergence, Privacy and Fairness for Wireless Personalized Federated Learning: Quantization-Assisted Min-Max Fair Scheduling
Enhancing Convergence, Privacy and Fairness for Wireless Personalized Federated Learning: Quantization-Assisted Min-Max Fair Scheduling
Xiyu Zhao
Qimei Cui
Ziqiang Du
Weicai Li
Xi Yu
Wei Ni
Ji Zhang
Xiaofeng Tao
Ping Zhang
51
0
0
03 Jun 2025
Provable Reinforcement Learning from Human Feedback with an Unknown Link Function
Provable Reinforcement Learning from Human Feedback with an Unknown Link Function
Qining Zhang
Lei Ying
55
0
0
03 Jun 2025
FSNet: Feasibility-Seeking Neural Network for Constrained Optimization with Guarantees
FSNet: Feasibility-Seeking Neural Network for Constrained Optimization with Guarantees
Hoang T. Nguyen
Priya L. Donti
23
0
0
31 May 2025
Convergence of Adam in Deep ReLU Networks via Directional Complexity and Kakeya Bounds
Convergence of Adam in Deep ReLU Networks via Directional Complexity and Kakeya Bounds
Anupama Sridhar
Alexander Johansen
60
0
0
21 May 2025
Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)
Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)
Artem Riabinin
Egor Shulgin
Kaja Gruntkowska
Peter Richtárik
AI4CE
113
1
0
19 May 2025
Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series
Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series
Jiang You
Xiaozhen Wang
Arben Cela
AI4TS
80
0
0
17 May 2025
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
Ziqing Xu
Hancheng Min
Salma Tarmoun
Enrique Mallada
Rene Vidal
123
0
0
16 May 2025
Memory-Efficient Orthogonal Fine-Tuning with Principal Subspace Adaptation
Memory-Efficient Orthogonal Fine-Tuning with Principal Subspace Adaptation
Fei Wu
Jia Hu
Geyong Min
Shiqiang Wang
97
0
0
16 May 2025
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Yuen-Man Pun
Iman Shames
38
0
0
04 May 2025
Towards Trustworthy Federated Learning with Untrusted Participants
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
Presented at ResearchTrend Connect | FedML on 18 Jun 2025
143
1
0
03 May 2025
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
102
0
0
30 Apr 2025
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Matthias Liero
Alexander Mielke
Oliver Tse
Jia Jie Zhu
87
1
0
29 Apr 2025
AlphaGrad: Non-Linear Gradient Normalization Optimizer
AlphaGrad: Non-Linear Gradient Normalization Optimizer
Soham Sane
ODL
130
0
0
22 Apr 2025
FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data
FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data
Yuan Zhou
Jiachen Zhong
Xinli Shi
G. Wen
Xinghuo Yu
FedML
75
0
0
16 Apr 2025
Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
Harsh Vardhan
Xiaofan Yu
Tajana Rosing
A. Mazumdar
FedML
68
0
0
02 Apr 2025
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Hyoungwook Jin
Yoonsu Kim
Dongyun Jung
Seungju Kim
Kiyoon Choi
J. Son
Juho Kim
LRM
117
5
0
01 Apr 2025
Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
A. C. B. D. Oliveira
Leilei Cui
Eduardo Sontag
64
0
0
31 Mar 2025
FedTilt: Towards Multi-Level Fairness-Preserving and Robust Federated Learning
FedTilt: Towards Multi-Level Fairness-Preserving and Robust Federated Learning
Binghui Zhang
Luis Mares De La Cruz
Binghui Wang
FedML
76
0
0
15 Mar 2025
Nash Equilibrium Constrained Auto-bidding With Bi-level Reinforcement Learning
Zhiyu Mou
Miao Xu
Rongquan Bai
Zhuoran Yang
Chuan Yu
Jian Xu
Bo Zheng
94
0
0
13 Mar 2025
Sharpness-Aware Minimization: General Analysis and Improved Rates
Dimitris Oikonomou
Nicolas Loizou
89
1
0
04 Mar 2025
Gradient-free stochastic optimization for additive models
Gradient-free stochastic optimization for additive models
A. Akhavan
Alexandre B. Tsybakov
159
0
0
03 Mar 2025
MPO: An Efficient Post-Processing Framework for Mixing Diverse Preference Alignment
MPO: An Efficient Post-Processing Framework for Mixing Diverse Preference Alignment
Tianze Wang
Dongnan Gui
Yifan Hu
Shuhang Lin
Linjun Zhang
91
1
0
25 Feb 2025
Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment
Faster WIND: Accelerating Iterative Best-of-NNN Distillation for LLM Alignment
Tong Yang
Jincheng Mei
H. Dai
Zixin Wen
Shicong Cen
Dale Schuurmans
Yuejie Chi
Bo Dai
120
4
0
20 Feb 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
167
2
0
28 Jan 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
106
0
0
25 Jan 2025
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
Jingxin Zhan
Yuchen Xin
Kaicheng Jin
Zhihua Zhang
181
0
0
19 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
124
2
0
08 Jan 2025
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Luiz F. O. Chamon
Mohammad Reza Karimi
Anna Korba
82
3
0
08 Jan 2025
On Penalty-based Bilevel Gradient Descent Method
On Penalty-based Bilevel Gradient Descent Method
Han Shen
Quan-Wu Xiao
Tianyi Chen
129
59
0
08 Jan 2025
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
Flint Xiaofeng Fan
Cheston Tan
Yew-Soon Ong
Roger Wattenhofer
Wei Tsang Ooi
169
1
0
20 Dec 2024
Causal Invariance Learning via Efficient Optimization of a Nonconvex
  Objective
Causal Invariance Learning via Efficient Optimization of a Nonconvex Objective
Zhenyu Wang
Yifan Hu
Peter Buhlmann
Zijian Guo
177
3
0
16 Dec 2024
FERERO: A Flexible Framework for Preference-Guided Multi-Objective
  Learning
FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning
Lisha Chen
A. F. M. Saif
Yanning Shen
Tianyi Chen
128
2
0
02 Dec 2024
Mirror Descent on Reproducing Kernel Banach Spaces
Akash Kumar
Mikhail Belkin
Parthe Pandit
90
1
0
18 Nov 2024
One-Layer Transformer Provably Learns One-Nearest Neighbor In Context
Zihao Li
Yuan Cao
Cheng Gao
Yihan He
Han Liu
Jason M. Klusowski
Jianqing Fan
Mengdi Wang
MLT
166
8
0
16 Nov 2024
Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with
  Variational Quantum Circuits
Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits
Jun Qi
Chao-Han Huck Yang
Samuel Yen-Chi Chen
Pin-Yu Chen
Hector Zenil
Jesper Tegner
52
1
0
13 Nov 2024
Analysis of regularized federated learning
Analysis of regularized federated learning
Langming Liu
Dingxuan Zhou
FedML
31
0
0
03 Nov 2024
Meta Stackelberg Game: Robust Federated Learning against Adaptive and
  Mixed Poisoning Attacks
Meta Stackelberg Game: Robust Federated Learning against Adaptive and Mixed Poisoning Attacks
Tao Li
Henger Li
Yunian Pan
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
68
5
0
22 Oct 2024
Polyak's Heavy Ball Method Achieves Accelerated Local Rate of
  Convergence under Polyak-Lojasiewicz Inequality
Polyak's Heavy Ball Method Achieves Accelerated Local Rate of Convergence under Polyak-Lojasiewicz Inequality
Sebastian Kassing
Simon Weissmann
64
2
0
22 Oct 2024
S-CFE: Simple Counterfactual Explanations
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
141
1
0
21 Oct 2024
Tighter Performance Theory of FedExProx
Tighter Performance Theory of FedExProx
Wojciech Anyszka
Kaja Gruntkowska
Alexander Tyurin
Peter Richtárik
FedML
50
0
0
20 Oct 2024
Active-Dormant Attention Heads: Mechanistically Demystifying
  Extreme-Token Phenomena in LLMs
Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs
Tianyu Guo
Druv Pai
Yu Bai
Jiantao Jiao
Michael I. Jordan
Song Mei
75
14
0
17 Oct 2024
Loss Landscape Characterization of Neural Networks without
  Over-Parametrization
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov
Niccolò Ajroldi
Antonio Orvieto
Aurelien Lucchi
80
4
0
16 Oct 2024
On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures
On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures
Wei Shen
Ruida Zhou
Jing Yang
Cong Shen
79
4
0
15 Oct 2024
Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
Zhanpeng Zhou
Mingze Wang
Yuchen Mao
Bingrui Li
Junchi Yan
AAML
130
1
0
14 Oct 2024
Stability and Sharper Risk Bounds with Convergence Rate $O(1/n^2)$
Stability and Sharper Risk Bounds with Convergence Rate O(1/n2)O(1/n^2)O(1/n2)
Bowei Zhu
Shaojie Li
Yong Liu
43
0
0
13 Oct 2024
1234...101112
Next