Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 602 papers shown
Title
A Unified Analysis for the Subgradient Methods Minimizing Composite Nonconvex, Nonsmooth and Non-Lipschitz Functions
Daoli Zhu
Lei Zhao
Shuzhong Zhang
121
3
0
30 Aug 2023
Non-ergodic linear convergence property of the delayed gradient descent under the strongly convexity and the Polyak-Łojasiewicz condition
Hyunggwon Choi
Woocheol Choi
Jinmyoung Seok
85
0
0
23 Aug 2023
A Homogenization Approach for Gradient-Dominated Stochastic Optimization
Jiyuan Tan
Chenyu Xue
Chuwen Zhang
Qi Deng
Dongdong Ge
Yinyu Ye
87
2
0
21 Aug 2023
Variance reduction techniques for stochastic proximal point algorithms
Cheik Traoré
Vassilis Apidopoulos
Saverio Salzo
S. Villa
100
8
0
18 Aug 2023
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
93
8
0
13 Aug 2023
Faster Stochastic Algorithms for Minimax Optimization under Polyak--Łojasiewicz Conditions
Le‐Yu Chen
Boyuan Yao
Luo Luo
77
15
0
29 Jul 2023
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case
Meixuan He
Yuqing Liang
Jinlan Liu
Dongpo Xu
114
9
0
20 Jul 2023
Zero-th Order Algorithm for Softmax Attention Optimization
Yichuan Deng
Zhihang Li
Sridhar Mahadevan
Zhao Song
83
14
0
17 Jul 2023
Performance of
ℓ
1
\ell_1
ℓ
1
Regularization for Sparse Convex Optimization
Kyriakos Axiotis
T. Yasuda
90
0
0
14 Jul 2023
Invex Programs: First Order Algorithms and Their Convergence
Adarsh Barik
S. Sra
Jean Honorio
70
2
0
10 Jul 2023
Fairness-aware Federated Minimax Optimization with Convergence Guarantee
Gerry Windiarto Mohamad Dunda
Shenghui Song
FedML
96
2
0
10 Jul 2023
Accelerated Optimization Landscape of Linear-Quadratic Regulator
Le Feng
Yuan‐Hua Ni
96
0
0
07 Jul 2023
Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm
A. Ramesh
Aaron Mishkin
Mark Schmidt
Yihan Zhou
J. Lavington
Jennifer She
78
2
0
03 Jul 2023
A First Order Meta Stackelberg Method for Robust Federated Learning
Yunian Pan
Tao Li
Henger Li
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
129
11
0
23 Jun 2023
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
181
4
0
21 Jun 2023
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths
Charles Guille-Escuret
Hiroki Naganuma
Kilian Fatras
Ioannis Mitliagkas
102
4
0
20 Jun 2023
Convergence and concentration properties of constant step-size SGD through Markov chains
Ibrahim Merad
Stéphane Gaïffas
103
5
0
20 Jun 2023
Gradient is All You Need?
Konstantin Riedl
T. Klock
Carina Geldhauser
M. Fornasier
106
9
0
16 Jun 2023
Robustly Learning a Single Neuron via Sharpness
Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
84
10
0
13 Jun 2023
Learning Unnormalized Statistical Models via Compositional Optimization
Wei Jiang
Jiayu Qin
Lingyu Wu
Changyou Chen
Tianbao Yang
Lijun Zhang
128
5
0
13 Jun 2023
Achieving Consensus over Compact Submanifolds
Jiang Hu
Jiaojiao Zhang
Kangkang Deng
85
5
0
07 Jun 2023
Minimum intrinsic dimension scaling for entropic optimal transport
Austin J. Stromme
96
11
0
06 Jun 2023
Aiming towards the minimizers: fast convergence of SGD for overparametrized problems
Chaoyue Liu
Dmitriy Drusvyatskiy
M. Belkin
Damek Davis
Yi-An Ma
ODL
97
20
0
05 Jun 2023
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Frederik Kunstner
V. S. Portella
Mark Schmidt
Nick Harvey
125
10
0
05 Jun 2023
A Generalized Alternating Method for Bilevel Learning under the Polyak-Łojasiewicz Condition
Quan-Wu Xiao
Songtao Lu
Tianyi Chen
146
3
0
04 Jun 2023
Gradient-free optimization of highly smooth functions: improved analysis and a new algorithm
A. Akhavan
Evgenii Chzhen
Massimiliano Pontil
Alexandre B. Tsybakov
102
12
0
03 Jun 2023
Solving Robust MDPs through No-Regret Dynamics
E. Guha
106
0
0
30 May 2023
Knowledge Distillation Performs Partial Variance Reduction
M. Safaryan
Alexandra Peste
Dan Alistarh
144
8
0
27 May 2023
Fine-Tuning Language Models with Just Forward Passes
Sadhika Malladi
Tianyu Gao
Eshaan Nichani
Alexandru Damian
Jason D. Lee
Danqi Chen
Sanjeev Arora
223
241
0
27 May 2023
A Guide Through the Zoo of Biased SGD
Yury Demidovich
Grigory Malinovsky
Igor Sokolov
Peter Richtárik
124
32
0
25 May 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
183
9
0
25 May 2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
120
17
0
24 May 2023
The Crucial Role of Normalization in Sharpness-Aware Minimization
Yan Dai
Kwangjun Ahn
S. Sra
167
20
0
24 May 2023
Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees
Sharan Vaswani
A. Kazemi
Reza Babanezhad
Nicolas Le Roux
OffRL
137
4
0
24 May 2023
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao
Robert Mansel Gower
Robin Walters
Rose Yu
MoMe
165
16
0
22 May 2023
Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Min-hsiu Hsieh
Hector Zenil
Jesper Tegner
118
2
0
18 May 2023
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
162
3
0
03 May 2023
Can Decentralized Stochastic Minimax Optimization Algorithms Converge Linearly for Finite-Sum Nonconvex-Nonconcave Problems?
Yihan Zhang
Wenhao Jiang
Feng-Song Zheng
C. C. Tan
Xinghua Shi
Hongchang Gao
67
1
0
24 Apr 2023
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems
Feihu Huang
Songcan Chen
117
6
0
21 Apr 2023
Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks
Jing An
Jianfeng Lu
95
5
0
18 Apr 2023
Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator
Haobo Qi
Feifei Wang
Hansheng Wang
83
15
0
13 Apr 2023
Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Łojasiewicz Condition
Chen Fan
Christos Thrampoulidis
Mark Schmidt
80
2
0
02 Apr 2023
Connected Superlevel Set in (Deep) Reinforcement Learning and its Application to Minimax Theorems
Sihan Zeng
Thinh T. Doan
Justin Romberg
OffRL
144
3
0
23 Mar 2023
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
143
8
0
18 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
103
6
0
08 Mar 2023
Amplitude-Varying Perturbation for Balancing Privacy and Utility in Federated Learning
Xinnan Yuan
W. Ni
Ming Ding
Kang Wei
Jun Li
H. Vincent Poor
FedML
88
49
0
07 Mar 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
140
20
0
07 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
228
8
0
07 Mar 2023
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates
Tianlong Nan
Yuan Gao
Christian Kroer
139
3
0
01 Mar 2023
From Optimization to Sampling Through Gradient Flows
Nicolas García Trillos
B. Hosseini
D. Sanz-Alonso
67
12
0
22 Feb 2023
Previous
1
2
3
4
5
...
11
12
13
Next