ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
v1v2v3v4 (latest)

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 602 papers shown
Title
A Unified Analysis for the Subgradient Methods Minimizing Composite
  Nonconvex, Nonsmooth and Non-Lipschitz Functions
A Unified Analysis for the Subgradient Methods Minimizing Composite Nonconvex, Nonsmooth and Non-Lipschitz Functions
Daoli Zhu
Lei Zhao
Shuzhong Zhang
121
3
0
30 Aug 2023
Non-ergodic linear convergence property of the delayed gradient descent
  under the strongly convexity and the Polyak-Łojasiewicz condition
Non-ergodic linear convergence property of the delayed gradient descent under the strongly convexity and the Polyak-Łojasiewicz condition
Hyunggwon Choi
Woocheol Choi
Jinmyoung Seok
85
0
0
23 Aug 2023
A Homogenization Approach for Gradient-Dominated Stochastic Optimization
A Homogenization Approach for Gradient-Dominated Stochastic Optimization
Jiyuan Tan
Chenyu Xue
Chuwen Zhang
Qi Deng
Dongdong Ge
Yinyu Ye
87
2
0
21 Aug 2023
Variance reduction techniques for stochastic proximal point algorithms
Variance reduction techniques for stochastic proximal point algorithms
Cheik Traoré
Vassilis Apidopoulos
Saverio Salzo
S. Villa
100
8
0
18 Aug 2023
Understanding the robustness difference between stochastic gradient
  descent and adaptive gradient methods
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
93
8
0
13 Aug 2023
Faster Stochastic Algorithms for Minimax Optimization under
  Polyak--Łojasiewicz Conditions
Faster Stochastic Algorithms for Minimax Optimization under Polyak--Łojasiewicz Conditions
Le‐Yu Chen
Boyuan Yao
Luo Luo
77
15
0
29 Jul 2023
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters
  and Non-ergodic Case
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case
Meixuan He
Yuqing Liang
Jinlan Liu
Dongpo Xu
114
9
0
20 Jul 2023
Zero-th Order Algorithm for Softmax Attention Optimization
Zero-th Order Algorithm for Softmax Attention Optimization
Yichuan Deng
Zhihang Li
Sridhar Mahadevan
Zhao Song
83
14
0
17 Jul 2023
Performance of $\ell_1$ Regularization for Sparse Convex Optimization
Performance of ℓ1\ell_1ℓ1​ Regularization for Sparse Convex Optimization
Kyriakos Axiotis
T. Yasuda
90
0
0
14 Jul 2023
Invex Programs: First Order Algorithms and Their Convergence
Invex Programs: First Order Algorithms and Their Convergence
Adarsh Barik
S. Sra
Jean Honorio
70
2
0
10 Jul 2023
Fairness-aware Federated Minimax Optimization with Convergence Guarantee
Fairness-aware Federated Minimax Optimization with Convergence Guarantee
Gerry Windiarto Mohamad Dunda
Shenghui Song
FedML
96
2
0
10 Jul 2023
Accelerated Optimization Landscape of Linear-Quadratic Regulator
Accelerated Optimization Landscape of Linear-Quadratic Regulator
Le Feng
Yuan‐Hua Ni
96
0
0
07 Jul 2023
Analyzing and Improving Greedy 2-Coordinate Updates for
  Equality-Constrained Optimization via Steepest Descent in the 1-Norm
Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm
A. Ramesh
Aaron Mishkin
Mark Schmidt
Yihan Zhou
J. Lavington
Jennifer She
78
2
0
03 Jul 2023
A First Order Meta Stackelberg Method for Robust Federated Learning
A First Order Meta Stackelberg Method for Robust Federated Learning
Yunian Pan
Tao Li
Henger Li
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
129
11
0
23 Jun 2023
Distributed Random Reshuffling Methods with Improved Convergence
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
181
4
0
21 Jun 2023
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization
  Paths
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths
Charles Guille-Escuret
Hiroki Naganuma
Kilian Fatras
Ioannis Mitliagkas
102
4
0
20 Jun 2023
Convergence and concentration properties of constant step-size SGD
  through Markov chains
Convergence and concentration properties of constant step-size SGD through Markov chains
Ibrahim Merad
Stéphane Gaïffas
103
5
0
20 Jun 2023
Gradient is All You Need?
Gradient is All You Need?
Konstantin Riedl
T. Klock
Carina Geldhauser
M. Fornasier
106
9
0
16 Jun 2023
Robustly Learning a Single Neuron via Sharpness
Robustly Learning a Single Neuron via Sharpness
Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
84
10
0
13 Jun 2023
Learning Unnormalized Statistical Models via Compositional Optimization
Learning Unnormalized Statistical Models via Compositional Optimization
Wei Jiang
Jiayu Qin
Lingyu Wu
Changyou Chen
Tianbao Yang
Lijun Zhang
128
5
0
13 Jun 2023
Achieving Consensus over Compact Submanifolds
Achieving Consensus over Compact Submanifolds
Jiang Hu
Jiaojiao Zhang
Kangkang Deng
85
5
0
07 Jun 2023
Minimum intrinsic dimension scaling for entropic optimal transport
Minimum intrinsic dimension scaling for entropic optimal transport
Austin J. Stromme
96
11
0
06 Jun 2023
Aiming towards the minimizers: fast convergence of SGD for
  overparametrized problems
Aiming towards the minimizers: fast convergence of SGD for overparametrized problems
Chaoyue Liu
Dmitriy Drusvyatskiy
M. Belkin
Damek Davis
Yi-An Ma
ODL
97
20
0
05 Jun 2023
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional
  Backtracking
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Frederik Kunstner
V. S. Portella
Mark Schmidt
Nick Harvey
125
10
0
05 Jun 2023
A Generalized Alternating Method for Bilevel Learning under the
  Polyak-Łojasiewicz Condition
A Generalized Alternating Method for Bilevel Learning under the Polyak-Łojasiewicz Condition
Quan-Wu Xiao
Songtao Lu
Tianyi Chen
146
3
0
04 Jun 2023
Gradient-free optimization of highly smooth functions: improved analysis
  and a new algorithm
Gradient-free optimization of highly smooth functions: improved analysis and a new algorithm
A. Akhavan
Evgenii Chzhen
Massimiliano Pontil
Alexandre B. Tsybakov
102
12
0
03 Jun 2023
Solving Robust MDPs through No-Regret Dynamics
Solving Robust MDPs through No-Regret Dynamics
E. Guha
106
0
0
30 May 2023
Knowledge Distillation Performs Partial Variance Reduction
Knowledge Distillation Performs Partial Variance Reduction
M. Safaryan
Alexandra Peste
Dan Alistarh
144
8
0
27 May 2023
Fine-Tuning Language Models with Just Forward Passes
Fine-Tuning Language Models with Just Forward Passes
Sadhika Malladi
Tianyu Gao
Eshaan Nichani
Alexandru Damian
Jason D. Lee
Danqi Chen
Sanjeev Arora
223
241
0
27 May 2023
A Guide Through the Zoo of Biased SGD
A Guide Through the Zoo of Biased SGD
Yury Demidovich
Grigory Malinovsky
Igor Sokolov
Peter Richtárik
124
32
0
25 May 2023
How to escape sharp minima with random perturbations
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
183
9
0
25 May 2023
On the Convergence of Black-Box Variational Inference
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
120
17
0
24 May 2023
The Crucial Role of Normalization in Sharpness-Aware Minimization
The Crucial Role of Normalization in Sharpness-Aware Minimization
Yan Dai
Kwangjun Ahn
S. Sra
167
20
0
24 May 2023
Decision-Aware Actor-Critic with Function Approximation and Theoretical
  Guarantees
Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees
Sharan Vaswani
A. Kazemi
Reza Babanezhad
Nicolas Le Roux
OffRL
137
4
0
24 May 2023
Improving Convergence and Generalization Using Parameter Symmetries
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao
Robert Mansel Gower
Robin Walters
Rose Yu
MoMe
165
16
0
22 May 2023
Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Min-hsiu Hsieh
Hector Zenil
Jesper Tegner
118
2
0
18 May 2023
Low-complexity subspace-descent over symmetric positive definite
  manifold
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
162
3
0
03 May 2023
Can Decentralized Stochastic Minimax Optimization Algorithms Converge
  Linearly for Finite-Sum Nonconvex-Nonconcave Problems?
Can Decentralized Stochastic Minimax Optimization Algorithms Converge Linearly for Finite-Sum Nonconvex-Nonconcave Problems?
Yihan Zhang
Wenhao Jiang
Feng-Song Zheng
C. C. Tan
Xinghua Shi
Hongchang Gao
67
1
0
24 Apr 2023
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
  Problems
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems
Feihu Huang
Songcan Chen
117
6
0
21 Apr 2023
Convergence of stochastic gradient descent under a local Lojasiewicz
  condition for deep neural networks
Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks
Jing An
Jianfeng Lu
95
5
0
18 Apr 2023
Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator
Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator
Haobo Qi
Feifei Wang
Hansheng Wang
83
15
0
13 Apr 2023
Fast Convergence of Random Reshuffling under Over-Parameterization and
  the Polyak-Łojasiewicz Condition
Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Łojasiewicz Condition
Chen Fan
Christos Thrampoulidis
Mark Schmidt
80
2
0
02 Apr 2023
Connected Superlevel Set in (Deep) Reinforcement Learning and its
  Application to Minimax Theorems
Connected Superlevel Set in (Deep) Reinforcement Learning and its Application to Minimax Theorems
Sihan Zeng
Thinh T. Doan
Justin Romberg
OffRL
144
3
0
23 Mar 2023
Practical and Matching Gradient Variance Bounds for Black-Box
  Variational Bayesian Inference
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
143
8
0
18 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional
  Compression
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
103
6
0
08 Mar 2023
Amplitude-Varying Perturbation for Balancing Privacy and Utility in
  Federated Learning
Amplitude-Varying Perturbation for Balancing Privacy and Utility in Federated Learning
Xinnan Yuan
W. Ni
Ming Ding
Kang Wei
Jun Li
H. Vincent Poor
FedML
88
49
0
07 Mar 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with
  Nonconvex Lower-Level
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
140
20
0
07 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
228
8
0
07 Mar 2023
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate
  Updates
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates
Tianlong Nan
Yuan Gao
Christian Kroer
139
3
0
01 Mar 2023
From Optimization to Sampling Through Gradient Flows
From Optimization to Sampling Through Gradient Flows
Nicolas García Trillos
B. Hosseini
D. Sanz-Alonso
67
12
0
22 Feb 2023
Previous
12345...111213
Next