Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 588 papers shown
Title
A First Order Meta Stackelberg Method for Robust Federated Learning
Yunian Pan
Tao Li
Henger Li
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
88
10
0
23 Jun 2023
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
129
4
0
21 Jun 2023
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths
Charles Guille-Escuret
Hiroki Naganuma
Kilian Fatras
Ioannis Mitliagkas
73
4
0
20 Jun 2023
Convergence and concentration properties of constant step-size SGD through Markov chains
Ibrahim Merad
Stéphane Gaïffas
68
5
0
20 Jun 2023
Gradient is All You Need?
Konstantin Riedl
T. Klock
Carina Geldhauser
M. Fornasier
52
8
0
16 Jun 2023
Robustly Learning a Single Neuron via Sharpness
Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
67
9
0
13 Jun 2023
Learning Unnormalized Statistical Models via Compositional Optimization
Wei Jiang
Jiayu Qin
Lingyu Wu
Changyou Chen
Tianbao Yang
Lijun Zhang
98
4
0
13 Jun 2023
Achieving Consensus over Compact Submanifolds
Jiang Hu
Jiaojiao Zhang
Kangkang Deng
62
4
0
07 Jun 2023
Minimum intrinsic dimension scaling for entropic optimal transport
Austin J. Stromme
47
10
0
06 Jun 2023
Aiming towards the minimizers: fast convergence of SGD for overparametrized problems
Chaoyue Liu
Dmitriy Drusvyatskiy
M. Belkin
Damek Davis
Yi-An Ma
ODL
77
18
0
05 Jun 2023
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Frederik Kunstner
V. S. Portella
Mark Schmidt
Nick Harvey
77
10
0
05 Jun 2023
A Generalized Alternating Method for Bilevel Learning under the Polyak-Łojasiewicz Condition
Quan-Wu Xiao
Songtao Lu
Tianyi Chen
78
2
0
04 Jun 2023
Gradient-free optimization of highly smooth functions: improved analysis and a new algorithm
A. Akhavan
Evgenii Chzhen
Massimiliano Pontil
Alexandre B. Tsybakov
46
11
0
03 Jun 2023
Solving Robust MDPs through No-Regret Dynamics
E. Guha
53
0
0
30 May 2023
Knowledge Distillation Performs Partial Variance Reduction
M. Safaryan
Alexandra Peste
Dan Alistarh
82
7
0
27 May 2023
Fine-Tuning Language Models with Just Forward Passes
Sadhika Malladi
Tianyu Gao
Eshaan Nichani
Alexandru Damian
Jason D. Lee
Danqi Chen
Sanjeev Arora
134
205
0
27 May 2023
A Guide Through the Zoo of Biased SGD
Yury Demidovich
Grigory Malinovsky
Igor Sokolov
Peter Richtárik
100
28
0
25 May 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
113
8
0
25 May 2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
94
17
0
24 May 2023
The Crucial Role of Normalization in Sharpness-Aware Minimization
Yan Dai
Kwangjun Ahn
S. Sra
118
19
0
24 May 2023
Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees
Sharan Vaswani
A. Kazemi
Reza Babanezhad
Nicolas Le Roux
OffRL
83
4
0
24 May 2023
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao
Robert Mansel Gower
Robin Walters
Rose Yu
MoMe
127
16
0
22 May 2023
Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Min-hsiu Hsieh
Hector Zenil
Jesper Tegner
68
1
0
18 May 2023
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
95
3
0
03 May 2023
Can Decentralized Stochastic Minimax Optimization Algorithms Converge Linearly for Finite-Sum Nonconvex-Nonconcave Problems?
Yihan Zhang
Wenhao Jiang
Feng-Song Zheng
C. C. Tan
Xinghua Shi
Hongchang Gao
50
1
0
24 Apr 2023
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems
Feihu Huang
Songcan Chen
67
5
0
21 Apr 2023
Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks
Jing An
Jianfeng Lu
55
4
0
18 Apr 2023
Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator
Haobo Qi
Feifei Wang
Hansheng Wang
54
13
0
13 Apr 2023
Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Łojasiewicz Condition
Chen Fan
Christos Thrampoulidis
Mark Schmidt
56
2
0
02 Apr 2023
Connected Superlevel Set in (Deep) Reinforcement Learning and its Application to Minimax Theorems
Sihan Zeng
Thinh T. Doan
Justin Romberg
OffRL
51
3
0
23 Mar 2023
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
96
8
0
18 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
59
6
0
08 Mar 2023
Amplitude-Varying Perturbation for Balancing Privacy and Utility in Federated Learning
Xinnan Yuan
W. Ni
Ming Ding
Kang Wei
Jun Li
H. Vincent Poor
FedML
64
45
0
07 Mar 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
99
19
0
07 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
114
7
0
07 Mar 2023
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates
Tianlong Nan
Yuan Gao
Christian Kroer
131
3
0
01 Mar 2023
From Optimization to Sampling Through Gradient Flows
Nicolas García Trillos
B. Hosseini
D. Sanz-Alonso
44
11
0
22 Feb 2023
Fusion of Global and Local Knowledge for Personalized Federated Learning
Tiansheng Huang
Li Shen
Yan Sun
Weiwei Lin
Dacheng Tao
FedML
86
12
0
21 Feb 2023
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
109
12
0
17 Feb 2023
On Rank Energy Statistics via Optimal Transport: Continuity, Convergence, and Change Point Detection
Matthew Werenski
Shoaib Bin Masud
James M. Murphy
Shuchin Aeron
62
4
0
15 Feb 2023
Continuized Acceleration for Quasar Convex Functions in Non-Convex Optimization
Jun-Kun Wang
Andre Wibisono
76
10
0
15 Feb 2023
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
107
10
0
11 Feb 2023
On the Privacy-Robustness-Utility Trilemma in Distributed Learning
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
70
27
0
09 Feb 2023
Federated Minimax Optimization with Client Heterogeneity
Pranay Sharma
Rohan Panda
Gauri Joshi
FedML
92
9
0
08 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
154
66
0
08 Feb 2023
Online Resource Allocation: Bandits feedback and Advice on Time-varying Demands
Lixing Lyu
Wang Chi Cheung
59
0
0
08 Feb 2023
On the Convergence of Federated Averaging with Cyclic Client Participation
Yae Jee Cho
Pranay Sharma
Gauri Joshi
Zheng Xu
Satyen Kale
Tong Zhang
FedML
101
33
0
06 Feb 2023
Quantized Distributed Training of Large Models with Convergence Guarantees
I. Markov
Adrian Vladu
Qi Guo
Dan Alistarh
MQ
82
11
0
05 Feb 2023
Follower Agnostic Methods for Stackelberg Games
C. Maheshwari
James Cheng
S. S. Sasty
Lillian J. Ratliff
Eric Mazumdar
82
2
0
02 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
74
7
0
30 Jan 2023
Previous
1
2
3
4
5
...
10
11
12
Next