Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 588 papers shown
Title
Towards Sharper Risk Bounds for Minimax Problems
Bowei Zhu
Shaojie Li
Yong Liu
67
0
0
11 Oct 2024
Nesterov acceleration in benignly non-convex landscapes
Kanan Gupta
Stephan Wojtowytsch
78
2
0
10 Oct 2024
A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT
Kai Li
Yilei Liang
Xin Yuan
Wei Ni
Jon Crowcroft
Chau Yuen
Ozgur B. Akan
FedML
56
3
0
02 Oct 2024
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Qining Zhang
Lei Ying
OffRL
138
4
0
25 Sep 2024
From exponential to finite/fixed-time stability: Applications to optimization
Ibrahim Kurban Özaslan
Mihailo R. Jovanović
65
2
0
18 Sep 2024
Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
Siqiao Mu
Diego Klabjan
MU
136
5
0
15 Sep 2024
Compute-Update Federated Learning: A Lattice Coding Approach
Seyed Mohammad Azimi-Abarghouyi
Lav Varshney
FedML
57
1
0
10 Sep 2024
Smoothed Robust Phase Retrieval
Zhong Zheng
Lingzhou Xue
58
2
0
03 Sep 2024
In-Context Learning with Representations: Contextual Generalization of Trained Transformers
Tong Yang
Yu Huang
Yingbin Liang
Yuejie Chi
MLT
100
12
0
19 Aug 2024
Mask in the Mirror: Implicit Sparsification
Tom Jacobs
R. Burkholz
191
4
0
19 Aug 2024
Absence of Closed-Form Descriptions for Gradient Flow in Two-Layer Narrow Networks
Yeachan Park
AI4CE
107
0
0
15 Aug 2024
Nonlinear Perturbation-based Non-Convex Optimization over Time-Varying Networks
Mohammadreza Doostmohammadian
Zulfiya R. Gabidullina
Hamid R. Rabiee
59
9
0
05 Aug 2024
Complexity of Minimizing Projected-Gradient-Dominated Functions with Stochastic First-order Oracles
Saeed Masiha
Saber Salehkaleybar
Niao He
Negar Kiyavash
Patrick Thiran
75
2
0
03 Aug 2024
Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization
Feihu Huang
101
5
0
25 Jul 2024
Quantum Natural Stochastic Pairwise Coordinate Descent
Mohammad Aamir Sohail
M. H. Khoozani
S. S. Pradhan
77
2
0
18 Jul 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
84
4
0
05 Jul 2024
Online Non-Stationary Stochastic Quasar-Convex Optimization
Yuen-Man Pun
Iman Shames
25
0
0
04 Jul 2024
Tracking solutions of time-varying variational inequalities
Hédi Hadiji
Sarah Sachs
Cristóbal Guzmán
76
1
0
20 Jun 2024
On the Convergence of Tâtonnement for Linear Fisher Markets
Tianlong Nan
Yuan Gao
Christian Kroer
35
1
0
18 Jun 2024
A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints
Liuyuan Jiang
Quan-Wu Xiao
Victor M. Tenorio
Fernando Real-Rojas
Antonio G. Marques
Tianyi Chen
133
2
0
14 Jun 2024
Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning
Qi Qi
Quanqi Hu
Qihang Lin
Tianbao Yang
126
1
0
09 Jun 2024
A Generalized Version of Chung's Lemma and its Applications
Li Jiang
Xiao Li
Andre Milzarek
Junwen Qiu
66
1
0
09 Jun 2024
Perturbation Towards Easy Samples Improves Targeted Adversarial Transferability
Junqi Gao
Biqing Qi
Yao Li
Zhichang Guo
Dong Li
Yuming Xing
Dazhi Zhang
AAML
70
7
0
08 Jun 2024
Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation
Yibo Yang
Xiaojie Li
Motasem Alfarra
Hasan Hammoud
Adel Bibi
Philip Torr
Guohao Li
81
3
0
07 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
82
2
0
04 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
138
2
0
03 Jun 2024
Lazy Safety Alignment for Large Language Models against Harmful Fine-tuning
Tiansheng Huang
Sihao Hu
Fatih Ilhan
Selim Furkan Tekin
Ling Liu
151
32
0
28 May 2024
Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks
D. Kovalev
Ekaterina Borodich
Alexander Gasnikov
Dmitrii Feoktistov
77
1
0
28 May 2024
On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
Chenyu Zheng
Wei Huang
Rongzheng Wang
Guoqiang Wu
Jun Zhu
Chongxuan Li
92
2
0
27 May 2024
Almost sure convergence rates of stochastic gradient methods under gradient domination
Simon Weissmann
Sara Klein
Waïss Azizian
Leif Döring
86
3
0
22 May 2024
Federated Learning With Energy Harvesting Devices: An MDP Framework
Kai Zhang
Xu Cao
Khaled B. Letaief
67
3
0
17 May 2024
Minimisation of Polyak-Łojasewicz Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Iman Shames
53
1
0
15 May 2024
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Sihan Zeng
Thinh T. Doan
128
5
0
15 May 2024
Data-Efficient and Robust Task Selection for Meta-Learning
Donglin Zhan
James Anderson
OOD
91
2
0
11 May 2024
Robust Semi-supervised Learning by Wisely Leveraging Open-set Data
Yang Yang
Nan Jiang
Yi Tian Xu
De-Chuan Zhan
89
18
0
11 May 2024
ε
ε
ε
-Policy Gradient for Online Pricing
Lukasz Szpruch
Tanut Treetanthiploet
Yufei Zhang
OffRL
85
1
0
06 May 2024
Learning Optimal Deterministic Policies with Stochastic Policy Gradients
Alessandro Montenegro
Marco Mussi
Alberto Maria Metelli
Matteo Papini
70
3
0
03 May 2024
The Privacy Power of Correlated Noise in Decentralized Learning
Youssef Allouah
Anastasia Koloskova
Aymane El Firdoussi
Martin Jaggi
R. Guerraoui
71
6
0
02 May 2024
Accelerated Fully First-Order Methods for Bilevel and Minimax Optimization
Chris Junchi Li
102
0
0
01 May 2024
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
AAML
71
1
0
01 May 2024
Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
Slawek Smyl
Boris N. Oreshkin
Paweł Pełka
Grzegorz Dudek
AI4TS
60
0
0
26 Apr 2024
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
93
8
0
09 Apr 2024
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
Tao Li
Qinghua Tao
Weihao Yan
Zehao Lei
Yingwen Wu
Kun Fang
Mingzhen He
Xiaolin Huang
AAML
101
6
0
30 Mar 2024
The Effectiveness of Local Updates for Decentralized Learning under Data Heterogeneity
Tongle Wu
Ying Sun
46
1
0
23 Mar 2024
Understanding and Improving Training-free Loss-based Diffusion Guidance
Yifei Shen
Xinyang Jiang
Yezhen Wang
Yifan Yang
Dongqi Han
Dongsheng Li
FaML
86
14
0
19 Mar 2024
Friendly Sharpness-Aware Minimization
Tao Li
Pan Zhou
Zhengbao He
Xinwen Cheng
Xiaolin Huang
AAML
80
17
0
19 Mar 2024
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Aaron Mishkin
Ahmed Khaled
Yuanhao Wang
Aaron Defazio
Robert Mansel Gower
110
9
0
06 Mar 2024
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
98
1
0
05 Mar 2024
Error bounds for particle gradient descent, and extensions of the log-Sobolev and Talagrand inequalities
Rocco Caprio
Juan Kuntz
Samuel Power
A. M. Johansen
90
10
0
04 Mar 2024
From Inverse Optimization to Feasibility to ERM
Saurabh Mishra
Anant Raj
Sharan Vaswani
83
3
0
27 Feb 2024
Previous
1
2
3
4
5
...
10
11
12
Next