Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
All Papers
Title
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 602 papers shown
Title
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
124
73
0
09 Sep 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
96
23
0
22 Aug 2018
Discrete linear-complexity reinforcement learning in continuous action spaces for Q-learning algorithms
P. Tavallali
G. Doran
L. Mandrake
41
0
0
16 Jul 2018
Accelerating likelihood optimization for ICA on real signals
Pierre Ablin
J. Cardoso
Alexandre Gramfort
43
2
0
25 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
119
149
0
20 Jun 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
124
359
0
11 Jun 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
101
304
0
25 May 2018
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
176
309
0
21 May 2018
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions
Mingrui Liu
Xiaoxuan Zhang
Lijun Zhang
Rong Jin
Tianbao Yang
99
26
0
11 May 2018
Frank-Wolfe Splitting via Augmented Lagrangian Method
Gauthier Gidel
Fabian Pedregosa
Simon Lacoste-Julien
80
30
0
09 Apr 2018
Revisiting Decomposable Submodular Function Minimization with Incidence Relations
Pan Li
O. Milenkovic
158
19
0
10 Mar 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
157
188
0
22 Feb 2018
Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization
Yi Zhou
Yingbin Liang
Huishuai Zhang
MLT
113
26
0
19 Feb 2018
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
151
221
0
19 Feb 2018
Differentially Private Empirical Risk Minimization Revisited: Faster and More General
Di Wang
Minwei Ye
Jinhui Xu
158
275
0
14 Feb 2018
Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity
Dan Garber
102
6
0
13 Feb 2018
Fast Global Convergence via Landscape of Empirical Loss
Chao Qu
Yan Li
Huan Xu
44
0
0
13 Feb 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
140
119
0
13 Feb 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
262
1,098
0
13 Feb 2018
On the Proximal Gradient Algorithm with Alternated Inertia
F. Iutzeler
J. Malick
49
33
0
17 Jan 2018
Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator
Maryam Fazel
Rong Ge
Sham Kakade
M. Mesbahi
169
627
0
15 Jan 2018
A Stochastic Trust Region Algorithm Based on Careful Step Normalization
Frank E. Curtis
K. Scheinberg
R. Shi
110
46
0
29 Dec 2017
Run-and-Inspect Method for Nonconvex Optimization and Global Optimality Bounds for R-Local Minimizers
Yifan Chen
Yuejiao Sun
W. Yin
59
5
0
22 Nov 2017
Riemannian Optimization via Frank-Wolfe Methods
Melanie Weber
S. Sra
103
35
0
30 Oct 2017
Stability and Generalization of Learning Algorithms that Converge to Global Optima
Zachary B. Charles
Dimitris Papailiopoulos
MLT
122
169
0
23 Oct 2017
Characterization of Gradient Dominance and Regularity Conditions for Neural Networks
Yi Zhou
Yingbin Liang
138
33
0
18 Oct 2017
A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds
Pooria Joulani
András Gyorgy
Csaba Szepesvári
98
44
0
08 Sep 2017
Nonconvex Sparse Logistic Regression with Weakly Convex Regularization
Xinyue Shen
Yuantao Gu
140
31
0
07 Aug 2017
A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints
Bin Hu
Peter M. Seiler
Anders Rantzer
130
36
0
25 Jun 2017
Gradient Diversity: a Key Ingredient for Scalable Distributed Learning
Dong Yin
A. Pananjady
Max Lam
Dimitris Papailiopoulos
Kannan Ramchandran
Peter L. Bartlett
107
11
0
18 Jun 2017
YellowFin and the Art of Momentum Tuning
Jian Zhang
Ioannis Mitliagkas
ODL
136
109
0
12 Jun 2017
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Lukas Balles
Philipp Hennig
178
180
0
22 May 2017
Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization
Qunwei Li
Yi Zhou
Yingbin Liang
P. Varshney
137
99
0
14 May 2017
Linear Convergence of Accelerated Stochastic Gradient Descent for Nonconvex Nonsmooth Optimization
Feihu Huang
Songcan Chen
71
2
0
26 Apr 2017
Faster Subgradient Methods for Functions with Hölderian Growth
Patrick R. Johnstone
P. Moulin
94
36
0
01 Apr 2017
Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry
Guillaume Garrigos
Lorenzo Rosasco
S. Villa
137
43
0
28 Mar 2017
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
178
255
0
14 Mar 2017
Learn-and-Adapt Stochastic Dual Gradients for Network Resource Allocation
Tianyi Chen
Qing Ling
G. Giannakis
106
22
0
05 Mar 2017
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
314
853
0
02 Mar 2017
SAGA and Restricted Strong Convexity
Chao Qu
Yan Li
Huan Xu
85
5
0
19 Feb 2017
Linear convergence of SDCA in statistical estimation
Chao Qu
Huan Xu
90
8
0
26 Jan 2017
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization
Xingguo Li
Junwei Lu
R. Arora
Jarvis Haupt
Han Liu
Zhaoran Wang
T. Zhao
117
53
0
29 Dec 2016
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption
Jie Liu
Martin Takáč
ODL
163
4
0
16 Dec 2016
The Physical Systems Behind Optimization Algorithms
Lin F. Yang
R. Arora
Vladimir Braverman
T. Zhao
AI4CE
113
19
0
08 Dec 2016
Adaptive Accelerated Gradient Converging Methods under Holderian Error Bound Condition
Mingrui Liu
Tianbao Yang
114
15
0
23 Nov 2016
Identity Matters in Deep Learning
Moritz Hardt
Tengyu Ma
OOD
227
402
0
14 Nov 2016
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
142
275
0
07 Nov 2016
Linear Convergence of SVRG in Statistical Estimation
Chao Qu
Yan Li
Huan Xu
110
11
0
07 Nov 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
241
62
0
18 Oct 2016
Accelerating Stochastic Composition Optimization
Mengdi Wang
Ji Liu
Ethan X. Fang
104
149
0
25 Jul 2016
Previous
1
2
3
...
11
12
13
Next