Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.03483
Cited By
Learning in Implicit Generative Models
11 October 2016
S. Mohamed
Balaji Lakshminarayanan
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning in Implicit Generative Models"
50 / 53 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
45
0
0
08 May 2025
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
37
0
0
05 May 2025
What's Wrong with Your Synthetic Tabular Data? Using Explainable AI to Evaluate Generative Models
Jan Kapar
Niklas Koenen
Martin Jullum
64
0
0
29 Apr 2025
Proper scoring rules for estimation and forecast evaluation
Kartik Waghmare
Johanna Ziegel
AI4TS
33
0
0
02 Apr 2025
Diffusion Models in Recommendation Systems: A Survey
Ting-Ruen Wei
Yi Fang
77
2
0
20 Feb 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
66
9
0
17 Feb 2025
Binary Losses for Density Ratio Estimation
Werner Zellinger
48
0
0
28 Jan 2025
Your copula is a classifier in disguise: classification-based copula density estimation
David Huk
Mark Steel
Ritabrata Dutta
23
0
0
05 Nov 2024
PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
Daniel Zilberg
Ron Levie
31
0
0
18 Sep 2024
Multimodality of AI for Education: Towards Artificial General Intelligence
Gyeong-Geon Lee
Lehong Shi
Ehsan Latif
Yizhu Gao
Arne Bewersdorff
...
Zheng Liu
Hui Wang
Gengchen Mai
Tiaming Liu
Xiaoming Zhai
22
37
0
10 Dec 2023
FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models
Stathis Galanakis
Alexandros Lattas
Stylianos Moschoglou
S. Zafeiriou
19
2
0
07 Dec 2023
TURBO: The Swiss Knife of Auto-Encoders
Guillaume Quétant
Yury Belousov
Vitaliy Kinakh
S. Voloshynovskiy
19
6
0
11 Nov 2023
Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
Zheng Wang
Shibo Li
Shikai Fang
Shandian Zhe
DiffM
AI4CE
11
1
0
09 Nov 2023
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
10
1
0
10 Oct 2023
Neural Markov Jump Processes
Patrick Seifner
Ramses J. Sanchez
BDL
27
7
0
31 May 2023
Control3Diff: Learning Controllable 3D Diffusion Models from Single-view Images
Jiatao Gu
Qingzhe Gao
Shuangfei Zhai
Baoquan Chen
Lingjie Liu
J. Susskind
28
29
0
13 Apr 2023
On the causality-preservation capabilities of generative modelling
Yves-Cédric Bauwelinckx
Jan Dhaene
Tim Verdonck
Milan van den Heuvel
CML
AI4CE
11
0
0
03 Jan 2023
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
15
4
0
24 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
26
11
0
07 Nov 2022
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
11
15
0
13 Jun 2022
Few-Shot Diffusion Models
Giorgio Giannone
Didrik Nielsen
Ole Winther
DiffM
171
49
0
30 May 2022
Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born Machines
I. Nikoloska
Osvaldo Simeone
AI4CE
6
3
0
31 Mar 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
16
46
0
08 Mar 2022
Resolving label uncertainty with implicit posterior models
Esther Rolf
Nikolay Malkin
Alexandros Graikos
A. Jojic
Caleb Robinson
Nebojsa Jojic
UQCV
8
10
0
28 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
16
29
0
02 Feb 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCV
OOD
BDL
9
45
0
26 Oct 2021
Learnability of the output distributions of local quantum circuits
M. Hinsche
M. Ioannou
A. Nietner
J. Haferkamp
Yihui Quek
D. Hangleiter
Jean-Pierre Seifert
Jens Eisert
R. Sweke
27
17
0
11 Oct 2021
F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
Chiara Leadbeater
Louis Sharrock
Brian Coyle
Marcello Benedetti
16
11
0
08 Oct 2021
Implicit Generative Copulas
Tim Janke
M. Ghanmi
F. Steinke
32
17
0
29 Sep 2021
There and Back Again: Learning to Simulate Radar Data for Real-World Applications
Rob Weston
Oiwi Parker Jones
Ingmar Posner
11
18
0
29 Nov 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
38
6,908
0
06 Oct 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
11
19
0
10 Jul 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GAN
DRL
4
61
0
09 Oct 2019
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
13
123
0
23 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
10
14
0
04 Jun 2019
Towards Multi-pose Guided Virtual Try-on Network
Haoye Dong
Xiaodan Liang
Bochao Wang
Hanjiang Lai
Jia Zhu
Jian Yin
3DH
17
202
0
28 Feb 2019
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
17
37
0
24 Jan 2019
Spread Divergence
Mingtian Zhang
Peter Hayes
Thomas Bird
Raza Habib
David Barber
MedIm
UD
20
20
0
21 Nov 2018
What Is It Like Down There? Generating Dense Ground-Level Views and Image Features From Overhead Imagery Using Conditional Generative Adversarial Networks
XueQing Deng
Yi Zhu
Shawn D. Newsam
GAN
20
27
0
13 Jun 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
16
119
0
28 May 2018
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
9
281
0
17 May 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
13
4,385
0
16 Feb 2018
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches
Simon Olofsson
M. Deisenroth
Ruth Misener
11
10
0
12 Feb 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
30
681
0
15 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
27
57
0
04 Sep 2017
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric P. Xing
DRL
GAN
16
126
0
02 Jun 2017
PixelGAN Autoencoders
Alireza Makhzani
Brendan J. Frey
GAN
21
100
0
02 Jun 2017
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
11
84
0
22 May 2017
1
2
Next