ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.03483
  4. Cited By
Learning in Implicit Generative Models

Learning in Implicit Generative Models

11 October 2016
S. Mohamed
Balaji Lakshminarayanan
    GAN
ArXivPDFHTML

Papers citing "Learning in Implicit Generative Models"

50 / 53 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
45
0
0
08 May 2025
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
39
0
0
05 May 2025
What's Wrong with Your Synthetic Tabular Data? Using Explainable AI to Evaluate Generative Models
What's Wrong with Your Synthetic Tabular Data? Using Explainable AI to Evaluate Generative Models
Jan Kapar
Niklas Koenen
Martin Jullum
64
0
0
29 Apr 2025
Proper scoring rules for estimation and forecast evaluation
Proper scoring rules for estimation and forecast evaluation
Kartik Waghmare
Johanna Ziegel
AI4TS
33
0
0
02 Apr 2025
Diffusion Models in Recommendation Systems: A Survey
Diffusion Models in Recommendation Systems: A Survey
Ting-Ruen Wei
Yi Fang
77
2
0
20 Feb 2025
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
69
9
0
17 Feb 2025
Binary Losses for Density Ratio Estimation
Binary Losses for Density Ratio Estimation
Werner Zellinger
48
0
0
28 Jan 2025
Your copula is a classifier in disguise: classification-based copula density estimation
Your copula is a classifier in disguise: classification-based copula density estimation
David Huk
Mark Steel
Ritabrata Dutta
23
0
0
05 Nov 2024
PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive
  and Exclusive Communities
PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
Daniel Zilberg
Ron Levie
31
0
0
18 Sep 2024
Multimodality of AI for Education: Towards Artificial General
  Intelligence
Multimodality of AI for Education: Towards Artificial General Intelligence
Gyeong-Geon Lee
Lehong Shi
Ehsan Latif
Yizhu Gao
Arne Bewersdorff
...
Zheng Liu
Hui Wang
Gengchen Mai
Tiaming Liu
Xiaoming Zhai
22
37
0
10 Dec 2023
FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models
FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models
Stathis Galanakis
Alexandros Lattas
Stylianos Moschoglou
S. Zafeiriou
19
2
0
07 Dec 2023
TURBO: The Swiss Knife of Auto-Encoders
TURBO: The Swiss Knife of Auto-Encoders
Guillaume Quétant
Yury Belousov
Vitaliy Kinakh
S. Voloshynovskiy
24
6
0
11 Nov 2023
Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
Zheng Wang
Shibo Li
Shikai Fang
Shandian Zhe
DiffM
AI4CE
11
1
0
09 Nov 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
10
1
0
10 Oct 2023
Neural Markov Jump Processes
Neural Markov Jump Processes
Patrick Seifner
Ramses J. Sanchez
BDL
27
7
0
31 May 2023
Control3Diff: Learning Controllable 3D Diffusion Models from Single-view
  Images
Control3Diff: Learning Controllable 3D Diffusion Models from Single-view Images
Jiatao Gu
Qingzhe Gao
Shuangfei Zhai
Baoquan Chen
Lingjie Liu
J. Susskind
28
29
0
13 Apr 2023
On the causality-preservation capabilities of generative modelling
On the causality-preservation capabilities of generative modelling
Yves-Cédric Bauwelinckx
Jan Dhaene
Tim Verdonck
Milan van den Heuvel
CML
AI4CE
11
0
0
03 Jan 2023
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
15
4
0
24 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
26
11
0
07 Nov 2022
SIXO: Smoothing Inference with Twisted Objectives
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
11
15
0
13 Jun 2022
Few-Shot Diffusion Models
Few-Shot Diffusion Models
Giorgio Giannone
Didrik Nielsen
Ole Winther
DiffM
171
49
0
30 May 2022
Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born
  Machines
Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born Machines
I. Nikoloska
Osvaldo Simeone
AI4CE
6
3
0
31 Mar 2022
Variational methods for simulation-based inference
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
16
46
0
08 Mar 2022
Resolving label uncertainty with implicit posterior models
Resolving label uncertainty with implicit posterior models
Esther Rolf
Nikolay Malkin
Alexandros Graikos
A. Jojic
Caleb Robinson
Nebojsa Jojic
UQCV
8
10
0
28 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect
  Estimation
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
16
29
0
02 Feb 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCV
OOD
BDL
11
45
0
26 Oct 2021
Learnability of the output distributions of local quantum circuits
Learnability of the output distributions of local quantum circuits
M. Hinsche
M. Ioannou
A. Nietner
J. Haferkamp
Yihui Quek
D. Hangleiter
Jean-Pierre Seifert
Jens Eisert
R. Sweke
27
17
0
11 Oct 2021
F-Divergences and Cost Function Locality in Generative Modelling with
  Quantum Circuits
F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
Chiara Leadbeater
Louis Sharrock
Brian Coyle
Marcello Benedetti
16
11
0
08 Oct 2021
Implicit Generative Copulas
Implicit Generative Copulas
Tim Janke
M. Ghanmi
F. Steinke
35
17
0
29 Sep 2021
There and Back Again: Learning to Simulate Radar Data for Real-World
  Applications
There and Back Again: Learning to Simulate Radar Data for Real-World Applications
Rob Weston
Oiwi Parker Jones
Ingmar Posner
11
18
0
29 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
44
6,908
0
06 Oct 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
13
19
0
10 Jul 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Prescribed Generative Adversarial Networks
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GAN
DRL
4
61
0
09 Oct 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
15
123
0
23 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
10
14
0
04 Jun 2019
Towards Multi-pose Guided Virtual Try-on Network
Towards Multi-pose Guided Virtual Try-on Network
Haoye Dong
Xiaodan Liang
Bochao Wang
Hanjiang Lai
Jia Zhu
Jian Yin
3DH
17
202
0
28 Feb 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
17
37
0
24 Jan 2019
Spread Divergence
Spread Divergence
Mingtian Zhang
Peter Hayes
Thomas Bird
Raza Habib
David Barber
MedIm
UD
20
20
0
21 Nov 2018
What Is It Like Down There? Generating Dense Ground-Level Views and
  Image Features From Overhead Imagery Using Conditional Generative Adversarial
  Networks
What Is It Like Down There? Generating Dense Ground-Level Views and Image Features From Overhead Imagery Using Conditional Generative Adversarial Networks
XueQing Deng
Yi Zhu
Shawn D. Newsam
GAN
20
27
0
13 Jun 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
18
119
0
28 May 2018
The Blessings of Multiple Causes
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
9
281
0
17 May 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
13
4,385
0
16 Feb 2018
Design of Experiments for Model Discrimination Hybridising Analytical
  and Data-Driven Approaches
Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches
Simon Olofsson
M. Deisenroth
Ruth Misener
11
10
0
12 Feb 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
30
681
0
15 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
27
57
0
04 Sep 2017
On Unifying Deep Generative Models
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric P. Xing
DRL
GAN
18
126
0
02 Jun 2017
PixelGAN Autoencoders
PixelGAN Autoencoders
Alireza Makhzani
Brendan J. Frey
GAN
23
100
0
02 Jun 2017
Reducing Reparameterization Gradient Variance
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
13
84
0
22 May 2017
12
Next