ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.00858
  4. Cited By
Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate
  Message Passing and Applications
v1v2v3 (latest)

Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate Message Passing and Applications

3 January 2017
T. Lesieur
Florent Krzakala
Lenka Zdeborová
ArXiv (abs)PDFHTML

Papers citing "Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate Message Passing and Applications"

50 / 76 papers shown
Title
PCA recovery thresholds in low-rank matrix inference with sparse noise
PCA recovery thresholds in low-rank matrix inference with sparse noise
Urte Adomaityte
G. Sicuro
P. Vivo
60
0
0
14 Nov 2025
Statistical Advantage of Softmax Attention: Insights from Single-Location Regression
Statistical Advantage of Softmax Attention: Insights from Single-Location Regression
O. Duranthon
P. Marion
C. Boyer
B. Loureiro
L. Zdeborová
116
2
0
26 Sep 2025
Dimension-Free Bounds for Generalized First-Order Methods via Gaussian Coupling
Dimension-Free Bounds for Generalized First-Order Methods via Gaussian Coupling
Galen Reeves
75
2
0
14 Aug 2025
Computational Thresholds in Multi-Modal Learning via the Spiked Matrix-Tensor Model
Computational Thresholds in Multi-Modal Learning via the Spiked Matrix-Tensor Model
Hugo Tabanelli
Pierre Mergny
Lenka Zdeborová
Florent Krzakala
136
1
0
03 Jun 2025
Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block modelPhysical Review X (PRX), 2025
O. Duranthon
L. Zdeborová
377
1
0
03 Mar 2025
On the phase diagram of extensive-rank symmetric matrix denoising beyond rotational invariance
On the phase diagram of extensive-rank symmetric matrix denoising beyond rotational invariance
Jean Barbier
Francesco Camilli
Justin Ko
Koki Okajima
411
8
0
04 Nov 2024
When resampling/reweighting improves feature learning in imbalanced classification?: A toy-model study
When resampling/reweighting improves feature learning in imbalanced classification?: A toy-model study
Tomoyuki Obuchi
Toshiyuki Tanaka
281
2
0
09 Sep 2024
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Joint Graph Rewiring and Feature Denoising via Spectral ResonanceInternational Conference on Learning Representations (ICLR), 2024
Jonas Linkerhagner
Cheng Shi
Ivan Dokmanić
546
3
0
13 Aug 2024
Optimal thresholds and algorithms for a model of multi-modal learning in high dimensions
Optimal thresholds and algorithms for a model of multi-modal learning in high dimensions
Christian Keup
Lenka Zdeborová
282
2
0
03 Jul 2024
Linear Operator Approximate Message Passing (OpAMP)
Linear Operator Approximate Message Passing (OpAMP)
Riccardo Rossetti
B. Nazer
Galen Reeves
190
3
0
13 May 2024
Inferring Change Points in High-Dimensional Regression via Approximate Message Passing
Inferring Change Points in High-Dimensional Regression via Approximate Message Passing
Gabriel Arpino
Xiaoqi Liu
Julia Gontarek
R. Venkataramanan
216
0
0
11 Apr 2024
Fundamental limits of Non-Linear Low-Rank Matrix Estimation
Fundamental limits of Non-Linear Low-Rank Matrix Estimation
Pierre Mergny
Justin Ko
Florent Krzakala
Lenka Zdeborová
256
6
0
07 Mar 2024
Spectral Phase Transition and Optimal PCA in Block-Structured Spiked
  models
Spectral Phase Transition and Optimal PCA in Block-Structured Spiked models
Pierre Mergny
Justin Ko
Florent Krzakala
201
6
0
06 Mar 2024
Asymptotic generalization error of a single-layer graph convolutional
  network
Asymptotic generalization error of a single-layer graph convolutional networkLOG IN (LOG IN), 2024
O. Duranthon
L. Zdeborová
MLT
245
3
0
06 Feb 2024
Learning from higher-order statistics, efficiently: hypothesis tests,
  random features, and neural networks
Learning from higher-order statistics, efficiently: hypothesis tests, random features, and neural networks
Eszter Székely
Lorenzo Bardone
Federica Gerace
Sebastian Goldt
329
3
0
22 Dec 2023
Estimation of embedding vectors in high dimensions
Estimation of embedding vectors in high dimensions
G. A. Azar
M. Emami
A. Fletcher
Sundeep Rangan
204
1
0
12 Dec 2023
Sampling with flows, diffusion and autoregressive neural networks: A
  spin-glass perspective
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspectiveProceedings of the National Academy of Sciences of the United States of America (PNAS), 2023
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
202
38
0
27 Aug 2023
Sparse Representations, Inference and Learning
Sparse Representations, Inference and LearningJournal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech.), 2023
Clarissa Lauditi
Emanuele Troiani
Marc Mézard
AI4CE
153
1
0
28 Jun 2023
Approximate Message Passing for the Matrix Tensor Product Model
Approximate Message Passing for the Matrix Tensor Product Model
Riccardo Rossetti
Galen Reeves
171
12
0
27 Jun 2023
Optimal Inference in Contextual Stochastic Block Models
Optimal Inference in Contextual Stochastic Block Models
O. Duranthon
L. Zdeborová
BDL
277
14
0
06 Jun 2023
Automatic Hyperparameter Tuning in Sparse Matrix Factorization
Automatic Hyperparameter Tuning in Sparse Matrix FactorizationNeural Computation (Neural Comput.), 2023
Ryota Kawasumi
K. Takeda
213
1
0
17 May 2023
Mixed Regression via Approximate Message Passing
Mixed Regression via Approximate Message PassingJournal of machine learning research (JMLR), 2023
Nelvin Tan
R. Venkataramanan
262
7
0
05 Apr 2023
Neural-prior stochastic block model
Neural-prior stochastic block model
O. Duranthon
L. Zdeborová
331
4
0
17 Mar 2023
Gradient flow on extensive-rank positive semi-definite matrix denoising
Gradient flow on extensive-rank positive semi-definite matrix denoisingInformation Theory Workshop (ITW), 2023
A. Bodin
N. Macris
195
5
0
16 Mar 2023
Optimal Algorithms for the Inhomogeneous Spiked Wigner Model
Optimal Algorithms for the Inhomogeneous Spiked Wigner ModelNeural Information Processing Systems (NeurIPS), 2023
Aleksandr Pak
Justin Ko
Florent Krzakala
201
11
0
13 Feb 2023
Approximate message passing from random initialization with applications
  to $\mathbb{Z}_{2}$ synchronization
Approximate message passing from random initialization with applications to Z2\mathbb{Z}_{2}Z2​ synchronizationProceedings of the National Academy of Sciences of the United States of America (PNAS), 2023
Gen Li
Wei Fan
Yuting Wei
253
17
0
07 Feb 2023
Disordered Systems Insights on Computational Hardness
Disordered Systems Insights on Computational HardnessJournal of Statistical Mechanics: Theory and Experiment (JSTAT), 2022
D. Gamarnik
Cristopher Moore
Lenka Zdeborová
AI4CE
214
51
0
15 Oct 2022
Bayes-optimal limits in structured PCA, and how to reach them
Bayes-optimal limits in structured PCA, and how to reach them
Jean Barbier
Francesco Camilli
Marco Mondelli
Manuel Sáenz
259
5
0
03 Oct 2022
The planted XY model: thermodynamics and inference
The planted XY model: thermodynamics and inferencePhysical Review E (Phys. Rev. E), 2022
Siyu Chen
G. Huang
Giovanni Piccioli
Lenka Zdeborová
133
0
0
12 Aug 2022
Low-rank Matrix Estimation with Inhomogeneous Noise
Low-rank Matrix Estimation with Inhomogeneous NoiseInformation and Inference A Journal of the IMA (JIII), 2022
A. Guionnet
Justin Ko
Florent Krzakala
Lenka Zdeborová
144
21
0
11 Aug 2022
Subspace clustering in high-dimensions: Phase transitions &
  Statistical-to-Computational gap
Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gapNeural Information Processing Systems (NeurIPS), 2022
Luca Pesce
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
252
3
0
26 May 2022
The price of ignorance: how much does it cost to forget noise structure
  in low-rank matrix estimation?
The price of ignorance: how much does it cost to forget noise structure in low-rank matrix estimation?Neural Information Processing Systems (NeurIPS), 2022
Jean Barbier
Tianqi Hou
Marco Mondelli
Manuel Sáenz
292
19
0
20 May 2022
Emergent Instabilities in Algorithmic Feedback Loops
Emergent Instabilities in Algorithmic Feedback Loops
Keith Burghardt
Kristina Lerman
120
1
0
18 Jan 2022
When Random Tensors meet Random Matrices
When Random Tensors meet Random MatricesThe Annals of Applied Probability (Ann. Appl. Probab.), 2021
Abdalgader Abubaker
M. Guillaud
Romain Couillet
257
17
0
23 Dec 2021
Estimation in Rotationally Invariant Generalized Linear Models via
  Approximate Message Passing
Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
R. Venkataramanan
Kevin Kögler
Marco Mondelli
249
34
0
08 Dec 2021
Graph-based Approximate Message Passing Iterations
Graph-based Approximate Message Passing Iterations
Cédric Gerbelot
Raphael Berthier
267
55
0
24 Sep 2021
Statistical limits of dictionary learning: random matrix theory and the
  spectral replica method
Statistical limits of dictionary learning: random matrix theory and the spectral replica method
Jean Barbier
N. Macris
271
27
0
14 Sep 2021
Fundamental limits for rank-one matrix estimation with groupwise
  heteroskedasticity
Fundamental limits for rank-one matrix estimation with groupwise heteroskedasticityInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Joshua K. Behne
Galen Reeves
154
15
0
22 Jun 2021
PCA Initialization for Approximate Message Passing in Rotationally
  Invariant Models
PCA Initialization for Approximate Message Passing in Rotationally Invariant ModelsNeural Information Processing Systems (NeurIPS), 2021
Marco Mondelli
R. Venkataramanan
302
20
0
04 Jun 2021
Bayesian reconstruction of memories stored in neural networks from their
  connectivity
Bayesian reconstruction of memories stored in neural networks from their connectivity
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
Nicolas Brunel
170
4
0
16 May 2021
Statistical and computational thresholds for the planted $k$-densest
  sub-hypergraph problem
Statistical and computational thresholds for the planted kkk-densest sub-hypergraph problemInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Luca Corinzia
Paolo Penna
Wojtek Szpankowski
J. M. Buhmann
283
8
0
23 Nov 2020
High-dimensional inference: a statistical mechanics perspective
High-dimensional inference: a statistical mechanics perspective
Jean Barbier
AI4CE
146
6
0
28 Oct 2020
Optimal Combination of Linear and Spectral Estimators for Generalized
  Linear Models
Optimal Combination of Linear and Spectral Estimators for Generalized Linear ModelsFoundations of Computational Mathematics (FoCM), 2020
Marco Mondelli
Christos Thrampoulidis
R. Venkataramanan
291
18
0
07 Aug 2020
The All-or-Nothing Phenomenon in Sparse Tensor PCA
The All-or-Nothing Phenomenon in Sparse Tensor PCA
Jonathan Niles-Weed
Ilias Zadik
197
19
0
22 Jul 2020
Free Energy Wells and Overlap Gap Property in Sparse PCA
Free Energy Wells and Overlap Gap Property in Sparse PCA
Gerard Ben Arous
Alexander S. Wein
Ilias Zadik
173
34
0
18 Jun 2020
All-or-nothing statistical and computational phase transitions in sparse
  spiked matrix estimation
All-or-nothing statistical and computational phase transitions in sparse spiked matrix estimationNeural Information Processing Systems (NeurIPS), 2020
Jean Barbier
N. Macris
Cynthia Rush
209
39
0
14 Jun 2020
Information-Theoretic Limits for the Matrix Tensor Product
Information-Theoretic Limits for the Matrix Tensor Product
Galen Reeves
281
35
0
22 May 2020
Information-theoretic limits of a multiview low-rank symmetric spiked
  matrix model
Information-theoretic limits of a multiview low-rank symmetric spiked matrix model
Jean Barbier
Galen Reeves
223
16
0
16 May 2020
Universality of Approximate Message Passing Algorithms
Universality of Approximate Message Passing AlgorithmsElectronic Journal of Probability (EJP), 2020
Wei-Kuo Chen
Wai-Kit Lam
179
42
0
23 Mar 2020
Thresholds of descending algorithms in inference problems
Thresholds of descending algorithms in inference problemsJournal of Statistical Mechanics: Theory and Experiment (JSTAT), 2020
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
331
4
0
02 Jan 2020
12
Next