Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.04730
Cited By
Understanding Black-box Predictions via Influence Functions
14 March 2017
Pang Wei Koh
Percy Liang
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Black-box Predictions via Influence Functions"
29 / 79 papers shown
Title
On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts
Yixin Wu
Ning Yu
Michael Backes
Yun Shen
Yang Zhang
DiffM
76
8
0
25 Oct 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
72
8
0
25 Sep 2023
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Shams Forruque Ahmed
Md. Sakib Bin Alam
Maliha Kabir
Shaila Afrin
Sabiha Jannat Rafa
Aanushka Mehjabin
Amir H. Gandomi
AI4CE
60
2
0
06 Sep 2023
Addressing Selection Bias in Computerized Adaptive Testing: A User-Wise Aggregate Influence Function Approach
Soonwoo Kwon
Sojung Kim
S. Lee
Jin-Young Kim
Suyeong An
Kyuseok Kim
30
3
0
23 Aug 2023
Verifiable and Provably Secure Machine Unlearning
Thorsten Eisenhofer
Doreen Riepel
Varun Chandrasekaran
Esha Ghosh
O. Ohrimenko
Nicolas Papernot
AAML
MU
56
26
0
17 Oct 2022
Energy-Latency Attacks via Sponge Poisoning
Antonio Emanuele Cinà
Ambra Demontis
Battista Biggio
Fabio Roli
Marcello Pelillo
SILM
84
29
0
14 Mar 2022
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
83
452
0
09 Aug 2020
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
64
71
0
09 Mar 2020
Penalty Method for Inversion-Free Deep Bilevel Optimization
Akshay Mehra
Jihun Hamm
44
46
0
08 Nov 2019
Architecture Selection via the Trade-off Between Accuracy and Robustness
Zhun Deng
Cynthia Dwork
Jialiang Wang
Yao-Min Zhao
AAML
42
3
0
04 Jun 2019
Understanding Neural Networks through Representation Erasure
Jiwei Li
Will Monroe
Dan Jurafsky
AAML
MILM
62
562
0
24 Dec 2016
"Influence Sketching": Finding Influential Samples In Large-Scale Regressions
M. Wojnowicz
Ben Cruz
Xuan Zhao
Brian Wallace
Matt Wolff
Jay Luan
Caleb Crable
TDI
32
30
0
17 Nov 2016
Data Poisoning Attacks on Factorization-Based Collaborative Filtering
Bo Li
Yining Wang
Aarti Singh
Yevgeniy Vorobeychik
AAML
53
341
0
29 Aug 2016
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
52
1,888
0
28 Jun 2016
Theano: A Python framework for fast computation of mathematical expressions
The Theano Development Team
Rami Al-Rfou
Guillaume Alain
Amjad Almahairi
Christof Angermüller
...
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
112
2,338
0
09 May 2016
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
40
782
0
05 May 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
158
11,135
0
14 Mar 2016
Auditing Black-box Models for Indirect Influence
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
TDI
MLAU
77
288
0
23 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
420
16,765
0
16 Feb 2016
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal
Brian Bullins
Elad Hazan
ODL
28
102
0
12 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
395
27,231
0
02 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
87
4,878
0
14 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
588
149,474
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
144
4,653
0
21 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
143
18,922
0
20 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
914
39,383
0
01 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
128
7,252
0
20 Dec 2013
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLM
ObjD
128
4,946
0
06 Oct 2013
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
63
1,580
0
27 Jun 2012
Previous
1
2