ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04599
  4. Cited By
On Calibration of Modern Neural Networks

On Calibration of Modern Neural Networks

14 June 2017
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
    UQCV
ArXivPDFHTML

Papers citing "On Calibration of Modern Neural Networks"

50 / 1,127 papers shown
Title
A Comparative Study of Calibration Methods for Imbalanced Class
  Incremental Learning
A Comparative Study of Calibration Methods for Imbalanced Class Incremental Learning
Umang Aggarwal
Adrian Daniel Popescu
Eden Belouadah
C´eline Hudelot
CLL
14
4
0
01 Feb 2022
Active Learning Over Multiple Domains in Natural Language Tasks
Active Learning Over Multiple Domains in Natural Language Tasks
Shayne Longpre
Julia Reisler
E. G. Huang
Yi Lu
Andrew J. Frank
Nikhil Ramesh
Chris DuBois
OOD
27
13
0
01 Feb 2022
Metrics for saliency map evaluation of deep learning explanation methods
Metrics for saliency map evaluation of deep learning explanation methods
T. Gomez
Thomas Fréour
Harold Mouchère
XAI
FAtt
69
41
0
31 Jan 2022
Lymphoma segmentation from 3D PET-CT images using a deep evidential
  network
Lymphoma segmentation from 3D PET-CT images using a deep evidential network
Ling Huang
S. Ruan
P. Decazes
Thierry Denoeux
3DPC
MedIm
41
37
0
31 Jan 2022
A Systematic Study of Bias Amplification
A Systematic Study of Bias Amplification
Melissa Hall
L. V. D. van der Maaten
Laura Gustafson
Maxwell Jones
Aaron B. Adcock
102
70
0
27 Jan 2022
Improving robustness and calibration in ensembles with diversity
  regularization
Improving robustness and calibration in ensembles with diversity regularization
H. A. Mehrtens
Camila González
Anirban Mukhopadhyay
UQCV
19
7
0
26 Jan 2022
Variational Model Inversion Attacks
Variational Model Inversion Attacks
Kuan-Chieh Jackson Wang
Yanzhe Fu
Ke Li
Ashish Khisti
R. Zemel
Alireza Makhzani
MIACV
19
95
0
26 Jan 2022
Leveraging Real Talking Faces via Self-Supervision for Robust Forgery
  Detection
Leveraging Real Talking Faces via Self-Supervision for Robust Forgery Detection
A. Haliassos
Rodrigo Mira
Stavros Petridis
M. Pantic
CVBM
40
126
0
18 Jan 2022
A Kernel-Expanded Stochastic Neural Network
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
20
5
0
14 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Class-Incremental Continual Learning into the eXtended DER-verse
Class-Incremental Continual Learning into the eXtended DER-verse
Matteo Boschini
Lorenzo Bonicelli
Pietro Buzzega
Angelo Porrello
Simone Calderara
CLL
BDL
32
128
0
03 Jan 2022
Interpretable Low-Resource Legal Decision Making
Interpretable Low-Resource Legal Decision Making
R. Bhambhoria
Hui Liu
Samuel Dahan
Xiao-Dan Zhu
ELM
AILaw
29
9
0
01 Jan 2022
Distilling the Knowledge of Romanian BERTs Using Multiple Teachers
Distilling the Knowledge of Romanian BERTs Using Multiple Teachers
Andrei-Marius Avram
Darius Catrina
Dumitru-Clementin Cercel
Mihai Dascualu
Traian Rebedea
Vasile Puaics
Dan Tufics
22
12
0
23 Dec 2021
On the relationship between calibrated predictors and unbiased volume
  estimation
On the relationship between calibrated predictors and unbiased volume estimation
Teodora Popordanoska
J. Bertels
Dirk Vandermeulen
F. Maes
Matthew B. Blaschko
42
11
0
23 Dec 2021
Maximum Entropy on Erroneous Predictions (MEEP): Improving model
  calibration for medical image segmentation
Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
19
15
0
22 Dec 2021
Towards a Science of Human-AI Decision Making: A Survey of Empirical
  Studies
Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies
Vivian Lai
Chacha Chen
Q. V. Liao
Alison Smith-Renner
Chenhao Tan
33
186
0
21 Dec 2021
Robust Distributed Bayesian Learning with Stragglers via Consensus Monte
  Carlo
Robust Distributed Bayesian Learning with Stragglers via Consensus Monte Carlo
Hari Hara Suthan Chittoor
Osvaldo Simeone
21
0
0
17 Dec 2021
Benchmarking Uncertainty Quantification on Biosignal Classification
  Tasks under Dataset Shift
Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift
Tong Xia
Jing Han
Cecilia Mascolo
OOD
24
10
0
16 Dec 2021
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
130
0
15 Dec 2021
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Volodymyr Kuleshov
Shachi Deshpande
UQCV
BDL
38
33
0
14 Dec 2021
On The Reliability Of Machine Learning Applications In Manufacturing
  Environments
On The Reliability Of Machine Learning Applications In Manufacturing Environments
Nicolas Jourdan
S. Sen
E. J. Husom
Enrique Garcia-Ceja
Tobias Biegel
J. Metternich
OOD
30
9
0
13 Dec 2021
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
23
2
0
12 Dec 2021
PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
Dan Hendrycks
Andy Zou
Mantas Mazeika
Leonard Tang
Bo-wen Li
D. Song
Jacob Steinhardt
UQCV
23
137
0
09 Dec 2021
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao Song
Guang Lin
FedML
30
16
0
09 Dec 2021
Online Calibrated and Conformal Prediction Improves Bayesian
  Optimization
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network
  Classifiers
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
41
19
0
07 Dec 2021
Multi-View Active Learning for Short Text Classification in
  User-Generated Data
Multi-View Active Learning for Short Text Classification in User-Generated Data
Payam Karisani
Negin Karisani
Li Xiong
VLM
15
4
0
05 Dec 2021
The Box Size Confidence Bias Harms Your Object Detector
The Box Size Confidence Bias Harms Your Object Detector
Johannes Gilg
Torben Teepe
Fabian Herzog
Gerhard Rigoll
ObjD
19
4
0
03 Dec 2021
InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
Pierre Colombo
Chloe Clave
Pablo Piantanida
34
41
0
02 Dec 2021
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior
  Predictive Checks with Deep Learning
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
30
1
0
02 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
27
2
0
02 Dec 2021
Structure-Aware Label Smoothing for Graph Neural Networks
Structure-Aware Label Smoothing for Graph Neural Networks
Yiwei Wang
Yujun Cai
Keli Zhang
Wei Wang
Henghui Ding
Muhao Chen
Jing Tang
Bryan Hooi
34
3
0
01 Dec 2021
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration
The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
UQCV
28
65
0
30 Nov 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
33
2
0
24 Nov 2021
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
CLL
30
295
0
22 Nov 2021
Teaching Humans When To Defer to a Classifier via Exemplars
Teaching Humans When To Defer to a Classifier via Exemplars
Hussein Mozannar
Arvindmani Satyanarayan
David Sontag
36
43
0
22 Nov 2021
Deep Probability Estimation
Deep Probability Estimation
Sheng Liu
Aakash Kaku
Weicheng Zhu
M. Leibovich
S. Mohan
...
Haoxiang Huang
L. Zanna
N. Razavian
Jonathan Niles-Weed
C. Fernandez‐Granda
UQCV
OOD
28
14
0
21 Nov 2021
TransMorph: Transformer for unsupervised medical image registration
TransMorph: Transformer for unsupervised medical image registration
Junyu Chen
Eric C. Frey
Yufan He
W. Paul Segars
Ye Li
Yong Du
ViT
MedIm
39
303
0
19 Nov 2021
Probabilistic Regression with Huber Distributions
Probabilistic Regression with Huber Distributions
David Mohlin
G. Bianchi
Josephine Sullivan
34
2
0
19 Nov 2021
Loss Functions for Discrete Contextual Pricing with Observational Data
Loss Functions for Discrete Contextual Pricing with Observational Data
Max Biggs
Ruijiang Gao
Wei-Ju Sun
31
10
0
18 Nov 2021
Exploring the Limits of Epistemic Uncertainty Quantification in Low-Shot
  Settings
Exploring the Limits of Epistemic Uncertainty Quantification in Low-Shot Settings
Matias Valdenegro-Toro
UQCV
25
2
0
18 Nov 2021
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty
  Propagation in Encoder-Decoder Networks
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty Propagation in Encoder-Decoder Networks
Giuseppina Carannante
Dimah Dera
Nidhal C.Bouaynaya
Hassan M. Fathallah-Shaykh
Ghulam Rasool
UQCV
AAML
OOD
27
6
0
10 Nov 2021
Automatically detecting data drift in machine learning classifiers
Automatically detecting data drift in machine learning classifiers
Samuel Ackerman
Orna Raz
Marcel Zalmanovici
Aviad Zlotnick
29
36
0
10 Nov 2021
Grassmannian learning mutual subspace method for image set recognition
Grassmannian learning mutual subspace method for image set recognition
L. S. Souza
Naoya Sogi
B. Gatto
Takumi Kobayashi
Kazuhiro Fukui
19
11
0
08 Nov 2021
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior
  Perspective
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
Zhengzhuo Xu
Zenghao Chai
Chun Yuan
65
52
0
06 Nov 2021
Calibrating the Dice loss to handle neural network overconfidence for
  biomedical image segmentation
Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Michael Yeung
L. Rundo
Yang Nan
Evis Sala
Carola-Bibiane Schönlieb
Guang Yang
UQCV
25
30
0
31 Oct 2021
Rethinking the Knowledge Distillation From the Perspective of Model
  Calibration
Rethinking the Knowledge Distillation From the Perspective of Model Calibration
Lehan Yang
Jincen Song
14
2
0
31 Oct 2021
On the use of uncertainty in classifying Aedes Albopictus mosquitoes
On the use of uncertainty in classifying Aedes Albopictus mosquitoes
Gereziher W. Adhane
Mohammad Mahdi Dehshibi
David Masip
23
7
0
29 Oct 2021
False Positive Detection and Prediction Quality Estimation for LiDAR
  Point Cloud Segmentation
False Positive Detection and Prediction Quality Estimation for LiDAR Point Cloud Segmentation
Pascal Colling
Matthias Rottmann
L. Roese-Koerner
Hanno Gottschalk
3DPC
30
3
0
29 Oct 2021
Exploring Covariate and Concept Shift for Detection and Calibration of
  Out-of-Distribution Data
Exploring Covariate and Concept Shift for Detection and Calibration of Out-of-Distribution Data
Junjiao Tian
Yen-Change Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
19
6
0
28 Oct 2021
Previous
123...131415...212223
Next