ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04599
  4. Cited By
On Calibration of Modern Neural Networks
v1v2 (latest)

On Calibration of Modern Neural Networks

International Conference on Machine Learning (ICML), 2017
14 June 2017
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
    UQCV
ArXiv (abs)PDFHTML

Papers citing "On Calibration of Modern Neural Networks"

50 / 3,756 papers shown
Title
Task adapted reconstruction for inverse problems
Task adapted reconstruction for inverse problems
J. Adler
Sebastian Lunz
Olivier Verdier
Carola-Bibiane Schönlieb
Ozan Oktem
141
48
0
27 Aug 2018
ParaNet - Using Dense Blocks for Early Inference
ParaNet - Using Dense Blocks for Early Inference
Jo Chuang
Eric Tsai
Kevin Huang
Jay Fetter
PINN
40
1
0
24 Aug 2018
Discriminative out-of-distribution detection for semantic segmentation
Discriminative out-of-distribution detection for semantic segmentation
Petra Bevandić
Ivan Kreso
Marin Orsic
Sinisa Segvic
168
86
0
23 Aug 2018
Improving Simple Models with Confidence Profiles
Improving Simple Models with Confidence ProfilesNeural Information Processing Systems (NeurIPS), 2018
Amit Dhurandhar
Karthikeyan Shanmugam
Ronny Luss
Peder Olsen
160
47
0
19 Jul 2018
Zap: Making Predictions Based on Online User Behavior
Zap: Making Predictions Based on Online User Behavior
Yuri Chervonyi
Dragos Harabor
Brian Zhang
Josh Sacks
VLM
72
0
0
16 Jul 2018
Direct Uncertainty Prediction for Medical Second Opinions
Direct Uncertainty Prediction for Medical Second OpinionsInternational Conference on Machine Learning (ICML), 2018
M. Raghu
Katy Blumer
Rory Sayres
Ziad Obermeyer
Robert D. Kleinberg
S. Mullainathan
Jon M. Kleinberg
OODUD
385
144
0
04 Jul 2018
Behaviour Policy Estimation in Off-Policy Policy Evaluation: Calibration
  Matters
Behaviour Policy Estimation in Off-Policy Policy Evaluation: Calibration Matters
Aniruddh Raghu
Omer Gottesman
Yao Liu
Matthieu Komorowski
A. Faisal
Finale Doshi-Velez
Emma Brunskill
OffRL
153
35
0
03 Jul 2018
Uncertainty in the Variational Information Bottleneck
Uncertainty in the Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
240
106
0
02 Jul 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated RegressionInternational Conference on Machine Learning (ICML), 2018
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDLUQCV
516
736
0
01 Jul 2018
A New Angle on L2 Regularization
A New Angle on L2 Regularization
T. Tanay
Lewis D. Griffin
LLMSV
112
5
0
28 Jun 2018
Adversarial Distillation of Bayesian Neural Network Posteriors
Adversarial Distillation of Bayesian Neural Network PosteriorsInternational Conference on Machine Learning (ICML), 2018
Kuan-Chieh Wang
Paul Vicol
James Lucas
Li Gu
Roger C. Grosse
R. Zemel
UQCVGANAAMLBDL
144
58
0
27 Jun 2018
xGEMs: Generating Examplars to Explain Black-Box Models
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
140
41
0
22 Jun 2018
Countdown Regression: Sharp and Calibrated Survival Predictions
Countdown Regression: Sharp and Calibrated Survival Predictions
Anand Avati
Tony Duan
Sharon Zhou
Kenneth Jung
N. Shah
A. Ng
448
60
0
21 Jun 2018
Built-in Vulnerabilities to Imperceptible Adversarial Perturbations
Built-in Vulnerabilities to Imperceptible Adversarial Perturbations
T. Tanay
Jerone T. A. Andrews
Lewis D. Griffin
148
7
0
19 Jun 2018
Impostor Networks for Fast Fine-Grained Recognition
Impostor Networks for Fast Fine-Grained Recognition
V. Lebedev
Artem Babenko
Victor Lempitsky
113
3
0
13 Jun 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
407
1,388
0
30 May 2018
To Trust Or Not To Trust A Classifier
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
433
492
0
30 May 2018
Lightweight Probabilistic Deep Networks
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCVOODBDL
208
194
0
29 May 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated
  Classification
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
177
82
0
28 May 2018
Calibrating Deep Convolutional Gaussian Processes
Calibrating Deep Convolutional Gaussian Processes
Gia-Lac Tran
Edwin V. Bonilla
John P. Cunningham
Pietro Michiardi
Maurizio Filippone
BDLUQCV
126
43
0
26 May 2018
Uncertainty-Aware Attention for Reliable Interpretation and Prediction
Uncertainty-Aware Attention for Reliable Interpretation and Prediction
Jay Heo
Haebeom Lee
Saehoon Kim
Juho Lee
Kwang Joon Kim
Eunho Yang
Sung Ju Hwang
OOD
143
90
0
24 May 2018
Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers
Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers
Yonatan Geifman
Guy Uziel
Ran El-Yaniv
UQCV
301
149
0
21 May 2018
Confidence Scoring Using Whitebox Meta-models with Linear Classifier
  Probes
Confidence Scoring Using Whitebox Meta-models with Linear Classifier Probes
Tongfei Chen
Jirí Navrátil
Vijay Iyengar
Karthikeyan Shanmugam
137
48
0
14 May 2018
Progressive Neural Networks for Image Classification
Progressive Neural Networks for Image Classification
Zhi Zhang
G. Ning
Yigang Cen
Yongqian Li
Zhiqun Zhao
Hao Sun
Zhihai He
48
8
0
25 Apr 2018
Strong Baselines for Neural Semi-supervised Learning under Domain Shift
Strong Baselines for Neural Semi-supervised Learning under Domain Shift
Sebastian Ruder
Barbara Plank
131
177
0
25 Apr 2018
Pathologies of Neural Models Make Interpretations Difficult
Pathologies of Neural Models Make Interpretations DifficultConference on Empirical Methods in Natural Language Processing (EMNLP), 2018
Shi Feng
Eric Wallace
Alvin Grissom II
Mohit Iyyer
Pedro Rodriguez
Jordan L. Boyd-Graber
AAMLFAtt
268
330
0
20 Apr 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
205
545
0
18 Apr 2018
KS(conf ): A Light-Weight Test if a ConvNet Operates Outside of Its
  Specifications
KS(conf ): A Light-Weight Test if a ConvNet Operates Outside of Its Specifications
Rémy Sun
Christoph H. Lampert
118
7
0
11 Apr 2018
Improving Confidence Estimates for Unfamiliar Examples
Improving Confidence Estimates for Unfamiliar Examples
Zhizhong Li
Derek Hoiem
217
11
0
09 Apr 2018
360° Stance Detection
360° Stance Detection
Sebastian Ruder
John Glover
Afshin Mehrabani
Parsa Ghaffari
66
9
0
03 Apr 2018
Calibrated Prediction Intervals for Neural Network Regressors
Calibrated Prediction Intervals for Neural Network Regressors
Gil Keren
N. Cummins
Björn Schuller
UQCV
272
31
0
26 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OODAAML
320
545
0
13 Mar 2018
Stochastic Activation Pruning for Robust Adversarial Defense
Stochastic Activation Pruning for Robust Adversarial Defense
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
296
569
0
05 Mar 2018
Analyzing Uncertainty in Neural Machine Translation
Analyzing Uncertainty in Neural Machine TranslationInternational Conference on Machine Learning (ICML), 2018
Myle Ott
Michael Auli
David Grangier
MarcÁurelio Ranzato
UQLM
453
283
0
28 Feb 2018
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNsNeural Information Processing Systems (NeurIPS), 2018
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
512
841
0
27 Feb 2018
Training wide residual networks for deployment using a single bit for
  each weight
Training wide residual networks for deployment using a single bit for each weight
Mark D Mcdonnell
MQ
200
73
0
23 Feb 2018
Diversity regularization in deep ensembles
Diversity regularization in deep ensembles
Changjian Shui
A. Mozafari
Jonathan Marek
Ihsen Hedhli
Christian Gagné
UQCV
108
15
0
22 Feb 2018
A General Framework for Abstention Under Label Shift
A General Framework for Abstention Under Label Shift
Amr M. Alexandari
A. Kundaje
Avanti Shrikumar
194
2
0
20 Feb 2018
Distribution Matching in Variational Inference
Distribution Matching in Variational Inference
Mihaela Rosca
Balaji Lakshminarayanan
S. Mohamed
GANCMLDRL
343
101
0
19 Feb 2018
A Likelihood-Free Inference Framework for Population Genetic Data using
  Exchangeable Neural Networks
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
Jeffrey Chan
Valerio Perrone
J. Spence
Paul A. Jenkins
Sara Mathieson
Yun S. Song
442
119
0
16 Feb 2018
Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps
Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps
Maciej Jaskowski
J. Swiatkowski
Michal Zajac
Maciek Klimek
Jarek Potiuk
Piotr Rybicki
P. Polatowski
Przemyslaw Walczyk
Kacper Nowicki
Marek Cygan
88
9
0
16 Feb 2018
DeepMatch: Balancing Deep Covariate Representations for Causal Inference
  Using Adversarial Training
DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training
Nathan Kallus
CMLOOD
186
83
0
15 Feb 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe
  Noise
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
598
589
0
14 Feb 2018
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Terrance Devries
Graham W. Taylor
OODOODD
262
628
0
13 Feb 2018
Predicting Adversarial Examples with High Confidence
Predicting Adversarial Examples with High Confidence
A. Galloway
Graham W. Taylor
M. Moussa
AAML
127
9
0
13 Feb 2018
Temporal Stability in Predictive Process Monitoring
Temporal Stability in Predictive Process Monitoring
Irene Teinemaa
Marlon Dumas
A. Leontjeva
F. Maggi
142
58
0
12 Dec 2017
Noisy Natural Gradient as Variational Inference
Noisy Natural Gradient as Variational Inference
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
ODL
250
220
0
06 Dec 2017
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
432
922
0
26 Nov 2017
Adversarial Phenomenon in the Eyes of Bayesian Deep Learning
Adversarial Phenomenon in the Eyes of Bayesian Deep Learning
Ambrish Rawat
Martin Wistuba
Maria-Irina Nicolae
BDLAAML
109
41
0
22 Nov 2017
Predict Responsibly: Improving Fairness and Accuracy by Learning to
  Defer
Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer
David Madras
T. Pitassi
R. Zemel
FaML
341
254
0
17 Nov 2017
Previous
123...747576
Next