ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.06168
  4. Cited By
Channel Pruning for Accelerating Very Deep Neural Networks

Channel Pruning for Accelerating Very Deep Neural Networks

19 July 2017
Yihui He
Xiangyu Zhang
Jian Sun
ArXivPDFHTML

Papers citing "Channel Pruning for Accelerating Very Deep Neural Networks"

50 / 1,090 papers shown
Title
Filter Sketch for Network Pruning
Filter Sketch for Network Pruning
Mingbao Lin
Liujuan Cao
Shaojie Li
QiXiang Ye
Yonghong Tian
Jianzhuang Liu
Q. Tian
Rongrong Ji
CLIP
3DPC
25
82
0
23 Jan 2020
BLK-REW: A Unified Block-based DNN Pruning Framework using Reweighted
  Regularization Method
BLK-REW: A Unified Block-based DNN Pruning Framework using Reweighted Regularization Method
Xiaolong Ma
ZeLin Li
Yifan Gong
Tianyun Zhang
Wei Niu
...
Pu Zhao
Jian Tang
X. Lin
Bin Ren
Yanzhi Wang
17
14
0
23 Jan 2020
Depthwise Non-local Module for Fast Salient Object Detection Using a
  Single Thread
Depthwise Non-local Module for Fast Salient Object Detection Using a Single Thread
Haofeng Li
Guanbin Li
Binbin Yang
Guanqi Chen
Liang Lin
Yizhou Yu
ObjD
38
28
0
22 Jan 2020
An Image Enhancing Pattern-based Sparsity for Real-time Inference on
  Mobile Devices
An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices
Xiaolong Ma
Wei Niu
Tianyun Zhang
Sijia Liu
Sheng Lin
...
Xiang Chen
Jian Tang
Kaisheng Ma
Bin Ren
Yanzhi Wang
33
27
0
20 Jan 2020
A "Network Pruning Network" Approach to Deep Model Compression
A "Network Pruning Network" Approach to Deep Model Compression
Vinay K. Verma
Pravendra Singh
Vinay P. Namboodiri
Piyush Rai
3DPC
VLM
20
8
0
15 Jan 2020
PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning
PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning
Dor Livne
Kobi Cohen
29
50
0
14 Jan 2020
Modeling of Pruning Techniques for Deep Neural Networks Simplification
Modeling of Pruning Techniques for Deep Neural Networks Simplification
Morteza Mousa Pasandi
M. Hajabdollahi
N. Karimi
S. Samavi
3DPC
14
18
0
13 Jan 2020
Campfire: Compressible, Regularization-Free, Structured Sparse Training
  for Hardware Accelerators
Campfire: Compressible, Regularization-Free, Structured Sparse Training for Hardware Accelerators
Noah Gamboa
Kais Kudrolli
Anand Dhoot
A. Pedram
14
10
0
09 Jan 2020
Sparse Weight Activation Training
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
32
73
0
07 Jan 2020
Discrimination-aware Network Pruning for Deep Model Compression
Discrimination-aware Network Pruning for Deep Model Compression
Jing Liu
Bohan Zhuang
Zhuangwei Zhuang
Yong Guo
Junzhou Huang
Jin-Hui Zhu
Mingkui Tan
CVBM
19
118
0
04 Jan 2020
Fractional Skipping: Towards Finer-Grained Dynamic CNN Inference
Fractional Skipping: Towards Finer-Grained Dynamic CNN Inference
Jianghao Shen
Y. Fu
Yue Wang
Pengfei Xu
Zhangyang Wang
Yingyan Lin
MQ
22
44
0
03 Jan 2020
PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
  Pattern-based Weight Pruning
PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with Pattern-based Weight Pruning
Wei Niu
Xiaolong Ma
Sheng Lin
Shihao Wang
Xuehai Qian
X. Lin
Yanzhi Wang
Bin Ren
MQ
18
226
0
01 Jan 2020
AdderNet: Do We Really Need Multiplications in Deep Learning?
AdderNet: Do We Really Need Multiplications in Deep Learning?
Hanting Chen
Yunhe Wang
Chunjing Xu
Boxin Shi
Chao Xu
Qi Tian
Chang Xu
18
194
0
31 Dec 2019
Domain Adaptation Regularization for Spectral Pruning
Domain Adaptation Regularization for Spectral Pruning
Laurent Dillard
Yosuke Shinya
Taiji Suzuki
19
1
0
26 Dec 2019
Taxonomy and Evaluation of Structured Compression of Convolutional
  Neural Networks
Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks
Andrey Kuzmin
Markus Nagel
Saurabh Pitre
Sandeep Pendyam
Tijmen Blankevoort
Max Welling
9
27
0
20 Dec 2019
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
Jieru Mei
Yingwei Li
Xiaochen Lian
Xiaojie Jin
Linjie Yang
Alan Yuille
Jianchao Yang
19
107
0
20 Dec 2019
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Seul-Ki Yeom
P. Seegerer
Sebastian Lapuschkin
Alexander Binder
Simon Wiedemann
K. Müller
Wojciech Samek
CVBM
13
198
0
18 Dec 2019
PreVIous: A Methodology for Prediction of Visual Inference Performance
  on IoT Devices
PreVIous: A Methodology for Prediction of Visual Inference Performance on IoT Devices
Delia Velasco-Montero
Jorge Fernández-Berni
R. Carmona-Galán
Á. Rodríguez-Vázquez
22
21
0
13 Dec 2019
Deep Model Compression Via Two-Stage Deep Reinforcement Learning
Deep Model Compression Via Two-Stage Deep Reinforcement Learning
Huixin Zhan
Wei-Ming Lin
Yongcan Cao
8
12
0
04 Dec 2019
Tropical Polynomial Division and Neural Networks
Tropical Polynomial Division and Neural Networks
Georgios Smyrnis
Petros Maragos
11
12
0
29 Nov 2019
Orthogonal Convolutional Neural Networks
Orthogonal Convolutional Neural Networks
Jiayun Wang
Yubei Chen
Rudrasis Chakraborty
Stella X. Yu
19
183
0
27 Nov 2019
GhostNet: More Features from Cheap Operations
GhostNet: More Features from Cheap Operations
Kai Han
Yunhe Wang
Qi Tian
Jianyuan Guo
Chunjing Xu
Chang Xu
20
2,579
0
27 Nov 2019
Domain-Aware Dynamic Networks
Domain-Aware Dynamic Networks
Tianyuan Zhang
Bichen Wu
Xin Wang
Joseph E. Gonzalez
Kurt Keutzer
22
6
0
26 Nov 2019
Real-Time Object Tracking via Meta-Learning: Efficient Model Adaptation
  and One-Shot Channel Pruning
Real-Time Object Tracking via Meta-Learning: Efficient Model Adaptation and One-Shot Channel Pruning
Ilchae Jung
Kihyun You
Hyeonwoo Noh
Minsu Cho
Bohyung Han
25
27
0
25 Nov 2019
Deep Mixture Density Network for Probabilistic Object Detection
Deep Mixture Density Network for Probabilistic Object Detection
Yihui He
Jianren Wang
UQCV
37
5
0
24 Nov 2019
Graph Pruning for Model Compression
Graph Pruning for Model Compression
Mingyang Zhang
Xinyi Yu
Jingtao Rong
L. Ou
GNN
27
9
0
22 Nov 2019
Few Shot Network Compression via Cross Distillation
Few Shot Network Compression via Cross Distillation
Haoli Bai
Jiaxiang Wu
Irwin King
Michael Lyu
FedML
20
60
0
21 Nov 2019
CUP: Cluster Pruning for Compressing Deep Neural Networks
CUP: Cluster Pruning for Compressing Deep Neural Networks
Rahul Duggal
Cao Xiao
R. Vuduc
Jimeng Sun
3DPC
VLM
16
22
0
19 Nov 2019
Neural Network Pruning with Residual-Connections and Limited-Data
Neural Network Pruning with Residual-Connections and Limited-Data
Jian-Hao Luo
Jianxin Wu
14
112
0
19 Nov 2019
Fine-Grained Neural Architecture Search
Fine-Grained Neural Architecture Search
Heewon Kim
Seokil Hong
Bohyung Han
Heesoo Myeong
Kyoung Mu Lee
AI4CE
14
13
0
18 Nov 2019
Provable Filter Pruning for Efficient Neural Networks
Provable Filter Pruning for Efficient Neural Networks
Lucas Liebenwein
Cenk Baykal
Harry Lang
Dan Feldman
Daniela Rus
VLM
3DPC
21
140
0
18 Nov 2019
Distributed Low Precision Training Without Mixed Precision
Distributed Low Precision Training Without Mixed Precision
Zehua Cheng
Weiyan Wang
Yan Pan
Thomas Lukasiewicz
MQ
18
5
0
18 Nov 2019
ASV: Accelerated Stereo Vision System
ASV: Accelerated Stereo Vision System
Yu Feng
P. Whatmough
Yuhao Zhu
11
34
0
15 Nov 2019
ASCAI: Adaptive Sampling for acquiring Compact AI
ASCAI: Adaptive Sampling for acquiring Compact AI
Mojan Javaheripi
Mohammad Samragh
T. Javidi
F. Koushanfar
26
2
0
15 Nov 2019
Knowledge Representing: Efficient, Sparse Representation of Prior
  Knowledge for Knowledge Distillation
Knowledge Representing: Efficient, Sparse Representation of Prior Knowledge for Knowledge Distillation
Junjie Liu
Dongchao Wen
Hongxing Gao
Wei Tao
Tse-Wei Chen
Kinya Osa
Masami Kato
22
21
0
13 Nov 2019
Structural Pruning in Deep Neural Networks: A Small-World Approach
Structural Pruning in Deep Neural Networks: A Small-World Approach
Gokul Krishnan
Xiaocong Du
Yu Cao
17
8
0
11 Nov 2019
A Programmable Approach to Neural Network Compression
A Programmable Approach to Neural Network Compression
Vinu Joseph
Saurav Muralidharan
Animesh Garg
M. Garland
Ganesh Gopalakrishnan
11
10
0
06 Nov 2019
Deep Compressed Pneumonia Detection for Low-Power Embedded Devices
Deep Compressed Pneumonia Detection for Low-Power Embedded Devices
Hongjia Li
Sheng Lin
Ning Liu
Caiwen Ding
Yanzhi Wang
6
1
0
04 Nov 2019
Ternary MobileNets via Per-Layer Hybrid Filter Banks
Ternary MobileNets via Per-Layer Hybrid Filter Banks
Dibakar Gope
Jesse G. Beu
Urmish Thakker
Matthew Mattina
MQ
24
15
0
04 Nov 2019
NAT: Neural Architecture Transformer for Accurate and Compact
  Architectures
NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo
Yin Zheng
Mingkui Tan
Qi Chen
Jian Chen
P. Zhao
Junzhou Huang
27
82
0
31 Oct 2019
E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings
E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings
Yue Wang
Ziyu Jiang
Xiaohan Chen
Pengfei Xu
Yang Katie Zhao
Yingyan Lin
Zhangyang Wang
MQ
21
83
0
29 Oct 2019
Neural Network Distiller: A Python Package For DNN Compression Research
Neural Network Distiller: A Python Package For DNN Compression Research
Neta Zmora
Guy Jacob
Lev Zlotnik
Bar Elharar
Gal Novik
17
73
0
27 Oct 2019
Depth-wise Decomposition for Accelerating Separable Convolutions in
  Efficient Convolutional Neural Networks
Depth-wise Decomposition for Accelerating Separable Convolutions in Efficient Convolutional Neural Networks
Yihui He
Jianing Qian
Jianren Wang
Cindy X. Le
Congrui Hetang
Qi Lyu
Wenping Wang
Tianwei Yue
45
11
0
21 Oct 2019
Automatic Generation of Multi-precision Multi-arithmetic CNN
  Accelerators for FPGAs
Automatic Generation of Multi-precision Multi-arithmetic CNN Accelerators for FPGAs
Yiren Zhao
Xitong Gao
Xuan Guo
Junyi Liu
Erwei Wang
Robert D. Mullins
P. Cheung
G. Constantinides
Chengzhong Xu
MQ
19
31
0
21 Oct 2019
Building Efficient CNNs Using Depthwise Convolutional Eigen-Filters
  (DeCEF)
Building Efficient CNNs Using Depthwise Convolutional Eigen-Filters (DeCEF)
Yinan Yu
Samuel Scheidegger
T. McKelvey
11
2
0
21 Oct 2019
Directed-Weighting Group Lasso for Eltwise Blocked CNN Pruning
Directed-Weighting Group Lasso for Eltwise Blocked CNN Pruning
Ke Zhan
Shi-qiang Jiang
Yunru Bai
Y. Li
Xu Liu
Zhuoran Xu
13
0
0
21 Oct 2019
Model Compression with Two-stage Multi-teacher Knowledge Distillation
  for Web Question Answering System
Model Compression with Two-stage Multi-teacher Knowledge Distillation for Web Question Answering System
Ze Yang
Linjun Shou
Ming Gong
Wutao Lin
Daxin Jiang
12
92
0
18 Oct 2019
SPEC2: SPECtral SParsE CNN Accelerator on FPGAs
SPEC2: SPECtral SParsE CNN Accelerator on FPGAs
Yue Niu
Hanqing Zeng
Ajitesh Srivastava
Kartik Lakhotia
R. Kannan
Yanzhi Wang
Viktor Prasanna
MQ
11
8
0
16 Oct 2019
A Generalized and Robust Method Towards Practical Gaze Estimation on
  Smart Phone
A Generalized and Robust Method Towards Practical Gaze Estimation on Smart Phone
Tianchu Guo
Yongchao Liu
Hui Zhang
Xiabing Liu
Youngjun Kwak
ByungIn Yoo
Jae-Joon Han
Changkyu Choi
17
34
0
16 Oct 2019
Reduced-Order Modeling of Deep Neural Networks
Reduced-Order Modeling of Deep Neural Networks
Julia Gusak
Talgat Daulbaev
E. Ponomarev
A. Cichocki
Ivan V. Oseledets
BDL
AI4CE
14
8
0
15 Oct 2019
Previous
123...161718...202122
Next