ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03690
  4. Cited By
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups

On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups

11 February 2018
Risi Kondor
Shubhendu Trivedi
    MLT
ArXivPDFHTML

Papers citing "On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups"

50 / 320 papers shown
Title
Implicit Convolutional Kernels for Steerable CNNs
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
26
5
0
12 Dec 2022
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
  Group Convolution
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution
A. Poulenard
M. Ovsjanikov
Leonidas J. Guibas
3DPC
30
2
0
29 Nov 2022
Scalar Invariant Networks with Zero Bias
Scalar Invariant Networks with Zero Bias
Chuqin Geng
Xiaojie Xu
Haolin Ye
X. Si
16
1
0
15 Nov 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
42
23
0
15 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
27
2
0
14 Nov 2022
Grassmann Manifold Flows for Stable Shape Generation
Grassmann Manifold Flows for Stable Shape Generation
Ryoma Yataka
Kazuki Hirashima
Masashi Shiraishi
19
1
0
05 Nov 2022
Text2Model: Text-based Model Induction for Zero-shot Image
  Classification
Text2Model: Text-based Model Induction for Zero-shot Image Classification
Ohad Amosy
Tomer Volk
Eilam Shapira
Eyal Ben-David
Roi Reichart
Gal Chechik
VLM
24
0
0
27 Oct 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
48
17
0
24 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
27
84
0
18 Oct 2022
A tradeoff between universality of equivariant models and learnability
  of symmetries
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
25
2
0
17 Oct 2022
Theory for Equivariant Quantum Neural Networks
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
27
88
0
16 Oct 2022
Representation Theory for Geometric Quantum Machine Learning
Representation Theory for Geometric Quantum Machine Learning
Michael Ragone
Paolo Braccia
Quynh T. Nguyen
Louis Schatzki
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
AI4CE
26
73
0
14 Oct 2022
Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
Sourya Basu
P. Sattigeri
K. Ramamurthy
Vijil Chenthamarakshan
Kush R. Varshney
L. Varshney
Payel Das
8
18
0
13 Oct 2022
Equivariance-aware Architectural Optimization of Neural Networks
Equivariance-aware Architectural Optimization of Neural Networks
Kaitlin Maile
Dennis G. Wilson
Patrick Forré
AI4CE
39
9
0
11 Oct 2022
In What Ways Are Deep Neural Networks Invariant and How Should We
  Measure This?
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
43
8
0
07 Oct 2022
Coarse-to-Fine Point Cloud Registration with SE(3)-Equivariant
  Representations
Coarse-to-Fine Point Cloud Registration with SE(3)-Equivariant Representations
Chengxuan Lin
Tung-I Chen
Hsin-Ying Lee
Wen-Chin Chen
Winston H. Hsu
3DPC
15
11
0
05 Oct 2022
How deep convolutional neural networks lose spatial information with
  training
How deep convolutional neural networks lose spatial information with training
Umberto M. Tomasini
Leonardo Petrini
Francesco Cagnetta
M. Wyart
41
9
0
04 Oct 2022
Analysis of (sub-)Riemannian PDE-G-CNNs
Analysis of (sub-)Riemannian PDE-G-CNNs
Gijs Bellaard
Daan Bon
Gautam Pai
B. Smets
R. Duits
AI4CE
28
12
0
03 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
In Search of Projectively Equivariant Networks
In Search of Projectively Equivariant Networks
Georg Bökman
Axel Flinth
Fredrik Kahl
37
0
0
29 Sep 2022
Equivariant Transduction through Invariant Alignment
Equivariant Transduction through Invariant Alignment
Jennifer C. White
Ryan Cotterell
14
4
0
22 Sep 2022
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
80
0
08 Sep 2022
A Feedforward Unitary Equivariant Neural Network
A Feedforward Unitary Equivariant Neural Network
P. Ma
Terence Chan
23
4
0
25 Aug 2022
What Can Be Learnt With Wide Convolutional Neural Networks?
What Can Be Learnt With Wide Convolutional Neural Networks?
Francesco Cagnetta
Alessandro Favero
M. Wyart
MLT
35
11
0
01 Aug 2022
Quiver neural networks
Quiver neural networks
I. Ganev
Robin G. Walters
34
4
0
26 Jul 2022
Homomorphism Autoencoder -- Learning Group Structured Representations
  from Observed Transitions
Homomorphism Autoencoder -- Learning Group Structured Representations from Observed Transitions
Hamza Keurti
Hsiao-Ru Pan
M. Besserve
Benjamin Grewe
Bernhard Schölkopf
AI4CE
27
13
0
25 Jul 2022
On Non-Linear operators for Geometric Deep Learning
On Non-Linear operators for Geometric Deep Learning
G. Sergeant-Perthuis
Jakob Maier
Joan Bruna
Edouard Oyallon
14
5
0
06 Jul 2022
Offset equivariant networks and their applications
Offset equivariant networks and their applications
Marco Cotogni
C. Cusano
16
7
0
01 Jul 2022
Generalized Permutants and Graph GENEOs
Generalized Permutants and Graph GENEOs
Faraz Ahmad
M. Ferri
Patrizio Frosini
24
4
0
29 Jun 2022
Equivariant Priors for Compressed Sensing with Unknown Orientation
Equivariant Priors for Compressed Sensing with Unknown Orientation
Anna Kuzina
Kumar Pratik
F. V. Massoli
Arash Behboodi
17
2
0
28 Jun 2022
The Manifold Scattering Transform for High-Dimensional Point Cloud Data
The Manifold Scattering Transform for High-Dimensional Point Cloud Data
Joyce A. Chew
H. Steach
Siddharth Viswanath
Hau‐Tieng Wu
M. Hirn
Deanna Needell
Smita Krishnaswamy
Michael Perlmutter
3DPC
27
13
0
21 Jun 2022
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
  Networks on Homogeneous Spaces
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces
Yinshuang Xu
Jiahui Lei
Edgar Dobriban
Kostas Daniilidis
23
19
0
16 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
36
441
0
15 Jun 2022
E2PN: Efficient SE(3)-Equivariant Point Network
E2PN: Efficient SE(3)-Equivariant Point Network
Minghan Zhu
Maani Ghaffari
W. A. Clark
Huei Peng
3DPC
16
18
0
11 Jun 2022
Integrating Symmetry into Differentiable Planning with Steerable
  Convolutions
Integrating Symmetry into Differentiable Planning with Steerable Convolutions
Linfeng Zhao
Xu Zhu
Lingzhi Kong
Robin G. Walters
Lawson L. S. Wong
20
7
0
08 Jun 2022
Universality of Group Convolutional Neural Networks Based on Ridgelet
  Analysis on Groups
Universality of Group Convolutional Neural Networks Based on Ridgelet Analysis on Groups
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
24
9
0
30 May 2022
A Classification of $G$-invariant Shallow Neural Networks
A Classification of GGG-invariant Shallow Neural Networks
Devanshu Agrawal
James Ostrowski
14
7
0
18 May 2022
What is an equivariant neural network?
What is an equivariant neural network?
Lek-Heng Lim
Bradley J. Nelson
BDL
FedML
MLT
32
22
0
15 May 2022
Group-Invariant Quantum Machine Learning
Group-Invariant Quantum Machine Learning
Martín Larocca
F. Sauvage
Faris M. Sbahi
Guillaume Verdon
Patrick J. Coles
M. Cerezo
AI4CE
16
117
0
04 May 2022
Design equivariant neural networks for 3D point cloud
Design equivariant neural networks for 3D point cloud
Thuan Trang
Thieu N. Vo
K. Nguyen
3DPC
11
0
0
02 May 2022
Learning Symmetric Embeddings for Equivariant World Models
Learning Symmetric Embeddings for Equivariant World Models
Jung Yeon Park
Ondrej Biza
Linfeng Zhao
Jan Willem van de Meent
Robin G. Walters
23
42
0
24 Apr 2022
A case for using rotation invariant features in state of the art feature
  matchers
A case for using rotation invariant features in state of the art feature matchers
Georg Bökman
Fredrik Kahl
12
36
0
21 Apr 2022
Theory of Graph Neural Networks: Representation and Learning
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
Symmetry Group Equivariant Architectures for Physics
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
19
27
0
11 Mar 2022
Resource-Efficient Invariant Networks: Exponential Gains by Unrolled
  Optimization
Resource-Efficient Invariant Networks: Exponential Gains by Unrolled Optimization
Sam Buchanan
Jingkai Yan
Ellie Haber
John N. Wright
10
3
0
09 Mar 2022
Rotationally Equivariant Super-Resolution of Velocity Fields in
  Two-Dimensional Fluids Using Convolutional Neural Networks
Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks
Y. Yasuda
R. Onishi
17
5
0
22 Feb 2022
Transformation Coding: Simple Objectives for Equivariant Representations
Transformation Coding: Simple Objectives for Equivariant Representations
Mehran Shakerinava
A. Mondal
Siamak Ravanbakhsh
OffRL
14
0
0
19 Feb 2022
Unsupervised Learning of Group Invariant and Equivariant Representations
Unsupervised Learning of Group Invariant and Equivariant Representations
R. Winter
Marco Bertolini
Tuan Le
Frank Noé
Djork-Arné Clevert
23
40
0
15 Feb 2022
A Theory of PAC Learnability under Transformation Invariances
A Theory of PAC Learnability under Transformation Invariances
Hang Shao
Omar Montasser
Avrim Blum
11
18
0
15 Feb 2022
Previous
1234567
Next