ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03690
  4. Cited By
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups

On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups

11 February 2018
Risi Kondor
Shubhendu Trivedi
    MLT
ArXivPDFHTML

Papers citing "On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups"

50 / 320 papers shown
Title
Equivariance versus Augmentation for Spherical Images
Equivariance versus Augmentation for Spherical Images
Jan E. Gerken
Oscar Carlsson
H. Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
3DPC
20
14
0
08 Feb 2022
Data-driven emergence of convolutional structure in neural networks
Data-driven emergence of convolutional structure in neural networks
Alessandro Ingrosso
Sebastian Goldt
48
38
0
01 Feb 2022
Equivariant neural networks for recovery of Hadamard matrices
Equivariant neural networks for recovery of Hadamard matrices
A. Peres
E. Dias
Luís Sarmento
Hugo Penedones
8
0
0
31 Jan 2022
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
Rui Wang
Robin G. Walters
Rose Yu
29
73
0
28 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
24
1,177
0
14 Jan 2022
Set Twister for Single-hop Node Classification
Set Twister for Single-hop Node Classification
Yangze Zhou
Vinayak A. Rao
Bruno Ribeiro
25
0
0
17 Dec 2021
Speeding up Learning Quantum States through Group Equivariant
  Convolutional Quantum Ansätze
Speeding up Learning Quantum States through Group Equivariant Convolutional Quantum Ansätze
Han Zheng
Zimu Li
Junyu Liu
Sergii Strelchuk
Risi Kondor
45
54
0
14 Dec 2021
Co-domain Symmetry for Complex-Valued Deep Learning
Co-domain Symmetry for Complex-Valued Deep Learning
Utkarsh Singhal
Yifei Xing
Stella X. Yu
23
12
0
02 Dec 2021
Rotation Equivariant 3D Hand Mesh Generation from a Single RGB Image
Rotation Equivariant 3D Hand Mesh Generation from a Single RGB Image
Joshua Mitton
Chaitanya Kaul
Roderick Murray-Smith
3DH
18
0
0
25 Nov 2021
Quantised Transforming Auto-Encoders: Achieving Equivariance to
  Arbitrary Transformations in Deep Networks
Quantised Transforming Auto-Encoders: Achieving Equivariance to Arbitrary Transformations in Deep Networks
Jianbo Jiao
João F. Henriques
BDL
OOD
MQ
13
2
0
25 Nov 2021
Robust Equivariant Imaging: a fully unsupervised framework for learning
  to image from noisy and partial measurements
Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements
Dongdong Chen
Julián Tachella
Mike E. Davies
OOD
17
59
0
25 Nov 2021
ChebLieNet: Invariant Spectral Graph NNs Turned Equivariant by
  Riemannian Geometry on Lie Groups
ChebLieNet: Invariant Spectral Graph NNs Turned Equivariant by Riemannian Geometry on Lie Groups
Hugo Aguettaz
Erik J. Bekkers
M. Defferrard
GNN
9
1
0
23 Nov 2021
Enabling equivariance for arbitrary Lie groups
Enabling equivariance for arbitrary Lie groups
L. MacDonald
Sameera Ramasinghe
Simon Lucey
AAML
19
25
0
16 Nov 2021
Equivariant Deep Dynamical Model for Motion Prediction
Equivariant Deep Dynamical Model for Motion Prediction
Bahar Azari
Deniz Erdoğmuş
25
1
0
02 Nov 2021
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
Weitao Du
He Zhang
Yuanqi Du
Qi Meng
Wei-Neng Chen
Bin Shao
Tie-Yan Liu
48
79
0
26 Oct 2021
Capacity of Group-invariant Linear Readouts from Equivariant
  Representations: How Many Objects can be Linearly Classified Under All
  Possible Views?
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
C. Pehlevan
13
5
0
14 Oct 2021
Implicit Bias of Linear Equivariant Networks
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
32
14
0
12 Oct 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
  Functions
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
19
36
0
11 Oct 2021
Equivariant Subgraph Aggregation Networks
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
46
174
0
06 Oct 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Turing approximations, toric isometric embeddings & manifold
  convolutions
Turing approximations, toric isometric embeddings & manifold convolutions
P. Suárez-Serrato
18
1
0
05 Oct 2021
Top-N: Equivariant set and graph generation without exchangeability
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
63
34
0
05 Oct 2021
CLIPort: What and Where Pathways for Robotic Manipulation
CLIPort: What and Where Pathways for Robotic Manipulation
Mohit Shridhar
Lucas Manuelli
D. Fox
LM&Ro
36
629
0
24 Sep 2021
Quantum algorithms for group convolution, cross-correlation, and
  equivariant transformations
Quantum algorithms for group convolution, cross-correlation, and equivariant transformations
Grecia Castelazo
Quynh T. Nguyen
Giacomo De Palma
Dirk Englund
S. Lloyd
B. Kiani
32
11
0
23 Sep 2021
Multi-Task Learning with Sequence-Conditioned Transporter Networks
Multi-Task Learning with Sequence-Conditioned Transporter Networks
M. H. Lim
Andy Zeng
Brian Ichter
Maryam Bandari
Erwin Coumans
Claire Tomlin
S. Schaal
Aleksandra Faust
30
14
0
15 Sep 2021
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy
Robin G. Walters
Yanchen Liu
Dashun Wang
Rose Yu
AI4CE
78
81
0
15 Sep 2021
Is Attention Better Than Matrix Decomposition?
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
54
137
0
09 Sep 2021
Learning to Discover Reflection Symmetry via Polar Matching Convolution
Learning to Discover Reflection Symmetry via Polar Matching Convolution
Ahyun Seo
Woohyeon Shim
Minsu Cho
SSL
11
8
0
30 Aug 2021
Internal Video Inpainting by Implicit Long-range Propagation
Internal Video Inpainting by Implicit Long-range Propagation
Hao Ouyang
Tengfei Wang
Qifeng Chen
29
36
0
04 Aug 2021
Fourier Series Expansion Based Filter Parametrization for Equivariant
  Convolutions
Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions
Qi Xie
Qian Zhao
Zongben Xu
Deyu Meng
11
19
0
30 Jul 2021
Circular-Symmetric Correlation Layer based on FFT
Circular-Symmetric Correlation Layer based on FFT
Bahar Azari
Deniz Erdogmus
34
1
0
26 Jul 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
30
286
0
26 Jul 2021
Transporting Causal Mechanisms for Unsupervised Domain Adaptation
Transporting Causal Mechanisms for Unsupervised Domain Adaptation
Zhongqi Yue
Qianru Sun
Xiansheng Hua
Hanwang Zhang
CML
17
56
0
23 Jul 2021
Correspondence-Free Point Cloud Registration with SO(3)-Equivariant
  Implicit Shape Representations
Correspondence-Free Point Cloud Registration with SO(3)-Equivariant Implicit Shape Representations
Minghan Zhu
Maani Ghaffari
H. Peng
3DPC
27
36
0
21 Jul 2021
A Bayesian Approach to Invariant Deep Neural Networks
A Bayesian Approach to Invariant Deep Neural Networks
Nikolaos Mourdoukoutas
Marco Federici
G. Pantalos
Mark van der Wilk
Vincent Fortuin
BDL
UQCV
21
0
0
20 Jul 2021
Equivariant Manifold Flows
Equivariant Manifold Flows
Isay Katsman
Aaron Lou
Derek Lim
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
AI4CE
17
24
0
19 Jul 2021
Universal approximation and model compression for radial neural networks
Universal approximation and model compression for radial neural networks
I. Ganev
Twan van Laarhoven
Robin G. Walters
19
8
0
06 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
37
64
0
02 Jul 2021
Lossy Compression for Lossless Prediction
Lossy Compression for Lossless Prediction
Yann Dubois
Benjamin Bloem-Reddy
Karen Ullrich
Chris J. Maddison
18
59
0
21 Jun 2021
Steerable Partial Differential Operators for Equivariant Neural Networks
Steerable Partial Differential Operators for Equivariant Neural Networks
Erik Jenner
Maurice Weiler
15
27
0
18 Jun 2021
Locality defeats the curse of dimensionality in convolutional
  teacher-student scenarios
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
22
31
0
16 Jun 2021
Category Theory in Machine Learning
Category Theory in Machine Learning
Dan Shiebler
Bruno Gavranović
Paul W. Wilson
13
31
0
13 Jun 2021
Equivariant Networks for Pixelized Spheres
Equivariant Networks for Pixelized Spheres
Mehran Shakerinava
Siamak Ravanbakhsh
3DPC
23
19
0
12 Jun 2021
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
11
23
0
11 Jun 2021
Encoding Involutory Invariances in Neural Networks
Encoding Involutory Invariances in Neural Networks
Anwesh Bhattacharya
M. Mattheakis
P. Protopapas
19
1
0
07 Jun 2021
VolterraNet: A higher order convolutional network with group
  equivariance for homogeneous manifolds
VolterraNet: A higher order convolutional network with group equivariance for homogeneous manifolds
Monami Banerjee
Rudrasis Chakraborty
Jose J. Bouza
B. Vemuri
28
11
0
05 Jun 2021
DISCO: accurate Discrete Scale Convolutions
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
18
31
0
04 Jun 2021
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
Bryn Elesedy
8
27
0
04 Jun 2021
Mesh-based graph convolutional neural networks for modeling materials
  with microstructure
Mesh-based graph convolutional neural networks for modeling materials with microstructure
A. Frankel
C. Safta
Coleman Alleman
Reese E. Jones
17
15
0
04 Jun 2021
Symmetry-via-Duality: Invariant Neural Network Densities from
  Parameter-Space Correlators
Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators
Anindita Maiti
Keegan Stoner
James Halverson
23
20
0
01 Jun 2021
Previous
1234567
Next