Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03690
Cited By
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
11 February 2018
Risi Kondor
Shubhendu Trivedi
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups"
50 / 320 papers shown
Title
Geometric Deep Learning and Equivariant Neural Networks
Jan E. Gerken
J. Aronsson
Oscar Carlsson
H. Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
MLT
13
66
0
28 May 2021
Homogeneous vector bundles and
G
G
G
-equivariant convolutional neural networks
J. Aronsson
21
24
0
12 May 2021
Skip-Convolutions for Efficient Video Processing
A. Habibian
Davide Abati
Taco S. Cohen
B. Bejnordi
52
50
0
23 Apr 2021
Deep Permutation Equivariant Structure from Motion
Dror Moran
Hodaya Koslowsky
Yoni Kasten
Haggai Maron
Meirav Galun
Ronen Basri
3DPC
20
17
0
14 Apr 2021
Autoequivariant Network Search via Group Decomposition
Sourya Basu
A. Magesh
Harshit Yadav
L. Varshney
24
6
0
10 Apr 2021
Autobahn: Automorphism-based Graph Neural Nets
Erik H. Thiede
Wenda Zhou
Risi Kondor
GNN
AI4CE
20
48
0
02 Mar 2021
Provably Strict Generalisation Benefit for Equivariant Models
Bryn Elesedy
Sheheryar Zaidi
AI4CE
14
83
0
20 Feb 2021
Group Equivariant Conditional Neural Processes
M. Kawano
Wataru Kumagai
Akiyoshi Sannai
Yusuke Iwasawa
Y. Matsuo
BDL
45
20
0
17 Feb 2021
Rotation-Equivariant Deep Learning for Diffusion MRI
Philip Muller
Vladimir Golkov
V. Tomassini
Daniel Cremers
DiffM
MedIm
17
28
0
13 Feb 2021
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
25
511
0
05 Feb 2021
Universal Approximation Theorem for Equivariant Maps by Group CNNs
Wataru Kumagai
Akiyoshi Sannai
51
13
0
27 Dec 2020
Knowledge as Invariance -- History and Perspectives of Knowledge-augmented Machine Learning
A. Sagel
Amit Sahu
Stefan Matthes
H. Pfeifer
Tianming Qiu
Harald Ruess
Hao Shen
Julian Wormann
11
3
0
21 Dec 2020
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
12
111
0
20 Dec 2020
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
DRL
MedIm
21
9
0
18 Dec 2020
Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning
Li Wang
Zhenya Yan
14
80
0
18 Dec 2020
Rotation-Invariant Autoencoders for Signals on Spheres
Suhas Lohit
Shubhendu Trivedi
MDE
22
5
0
08 Dec 2020
Learning Equivariant Representations
Carlos Esteves
BDL
22
0
0
04 Dec 2020
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
22
30
0
25 Nov 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
23
64
0
25 Nov 2020
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
22
19
0
09 Nov 2020
Trajectory Prediction using Equivariant Continuous Convolution
Robin G. Walters
Jinxi Li
Rose Yu
21
43
0
21 Oct 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
27
53
0
21 Oct 2020
Efficient Generalized Spherical CNNs
Oliver Cobb
C. Wallis
Augustine N. Mavor-Parker
Augustin Marignier
Matthew Alexander Price
Mayeul dÁvezac
Jason D. McEwen
21
33
0
09 Oct 2020
Simplicial Neural Networks
Stefania Ebli
M. Defferrard
Gard Spreemann
GNN
14
124
0
07 Oct 2020
Group Equivariant Stand-Alone Self-Attention For Vision
David W. Romero
Jean-Baptiste Cordonnier
MDE
18
57
0
02 Oct 2020
Deep Autoencoders: From Understanding to Generalization Guarantees
Romain Cosentino
Randall Balestriero
Richard Baraniuk
B. Aazhang
9
5
0
20 Sep 2020
Learning a Lie Algebra from Unlabeled Data Pairs
Christopher Ick
Vincent Lostanlen
DRL
8
2
0
19 Sep 2020
Computational Analysis of Deformable Manifolds: from Geometric Modelling to Deep Learning
Stefan C. Schonsheck
8
0
0
03 Sep 2020
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
20
12
0
31 Aug 2020
On the finite representation of group equivariant operators via permutant measures
Giovanni Bocchi
S. Botteghi
Martina Brasini
Patrizio Frosini
Nicola Quercioli
8
9
0
07 Aug 2020
Scale Equivariance Improves Siamese Tracking
Ivan Sosnovik
A. Moskalev
A. Smeulders
4
79
0
17 Jul 2020
Compositional Generalization in Semantic Parsing: Pre-training vs. Specialized Architectures
Daniel Furrer
Marc van Zee
Nathan Scales
Nathanael Scharli
CoGe
8
113
0
17 Jul 2020
Group Invariant Dictionary Learning
Yong Sheng Soh
9
8
0
15 Jul 2020
Meta-Learning Symmetries by Reparameterization
Allan Zhou
Tom Knowles
Chelsea Finn
OOD
24
90
0
06 Jul 2020
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Y. K. Foong
W. Bruinsma
Jonathan Gordon
Yann Dubois
James Requeima
Richard E. Turner
BDL
11
77
0
02 Jul 2020
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
M. Rath
A. P. Condurache
ViT
AI4CE
27
9
0
30 Jun 2020
Distribution-Based Invariant Deep Networks for Learning Meta-Features
Gwendoline de Bie
Herilalaina Rakotoarison
Gabriel Peyré
Michèle Sebag
OOD
13
1
0
24 Jun 2020
Spin-Weighted Spherical CNNs
Carlos Esteves
A. Makadia
Kostas Daniilidis
19
68
0
18 Jun 2020
Lorentz Group Equivariant Neural Network for Particle Physics
A. Bogatskiy
Brandon M. Anderson
Jan T. Offermann
M. Roussi
David W. Miller
Risi Kondor
AI4CE
13
136
0
08 Jun 2020
On Universalized Adversarial and Invariant Perturbations
Sandesh Kamath
Amit Deshpande
K. Subrahmanyam
AAML
11
0
0
08 Jun 2020
Equivariant Maps for Hierarchical Structures
Renhao Wang
Marjan Albooyeh
Siamak Ravanbakhsh
3DPC
11
13
0
05 Jun 2020
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
13
43
0
05 Jun 2020
Prediction and Generalisation over Directed Actions by Grid Cells
Changmin Yu
Timothy Edward John Behrens
Neil Burgess
6
2
0
05 Jun 2020
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
17
91
0
01 May 2020
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis
Valentin Oreiller
Vincent Andrearczyk
Julien Fageot
John O. Prior
A. Depeursinge
6
1
0
28 Apr 2020
A Data and Compute Efficient Design for Limited-Resources Deep Learning
Mirgahney Mohamed
Gabriele Cesa
Taco S. Cohen
Max Welling
MedIm
24
18
0
21 Apr 2020
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
19
41
0
10 Apr 2020
The general theory of permutation equivarant neural networks and higher order graph variational encoders
Erik H. Thiede
Truong Son-Hy
Risi Kondor
19
35
0
08 Apr 2020
ManifoldNorm: Extending normalizations on Riemannian Manifolds
Rudrasis Chakraborty
16
10
0
30 Mar 2020
Local Rotation Invariance in 3D CNNs
Vincent Andrearczyk
Julien Fageot
Valentin Oreiller
X. Montet
A. Depeursinge
32
23
0
19 Mar 2020
Previous
1
2
3
4
5
6
7
Next