Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 161 papers shown
Title
Optimizing full 3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic Resonance Imaging
R. ChaithyaG.
P. Weiss
Guillaume Daval-Frérot
Aurélien Massire
A. Vignaud
P. Ciuciu
6
8
0
06 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
26
14
0
05 Aug 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
22
9
0
28 Jul 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
28
18
0
21 Jul 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
32
6
0
11 Jul 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
19
23
0
09 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
31
74
0
28 Jun 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
15
25
0
25 Jun 2021
Extracting Global Dynamics of Loss Landscape in Deep Learning Models
Mohammed Eslami
Hamed Eramian
Marcio Gameiro
W. Kalies
Konstantin Mischaikow
16
1
0
14 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
Mufan Bill Li
Mihai Nica
Daniel M. Roy
23
33
0
07 Jun 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
41
19
0
11 May 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
28
15
0
06 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
21
23
0
05 May 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
32
13
0
01 Apr 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Convergence rates for gradient descent in the training of overparameterized artificial neural networks with biases
Arnulf Jentzen
T. Kröger
ODL
28
7
0
23 Feb 2021
A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions
Patrick Cheridito
Arnulf Jentzen
Adrian Riekert
Florian Rossmannek
23
24
0
19 Feb 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
23
37
0
05 Jan 2021
On the emergence of simplex symmetry in the final and penultimate layers of neural network classifiers
E. Weinan
Stephan Wojtowytsch
23
42
0
10 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Neural collapse with unconstrained features
D. Mixon
Hans Parshall
Jianzong Pi
11
114
0
23 Nov 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
21
25
0
04 Nov 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
12
86
0
30 Sep 2020
Machine Learning and Computational Mathematics
Weinan E
PINN
AI4CE
18
61
0
23 Sep 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
16
67
0
09 Sep 2020
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Valentin De Bortoli
Alain Durmus
Xavier Fontaine
Umut Simsekli
16
25
0
13 Jul 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
33
100
0
25 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
Representation formulas and pointwise properties for Barron functions
E. Weinan
Stephan Wojtowytsch
20
79
0
10 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
58
11
0
08 Jun 2020
Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective
Stephan Wojtowytsch
E. Weinan
MLT
18
48
0
21 May 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
26
13
0
23 Mar 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
31
78
0
11 Mar 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
16
327
0
11 Feb 2020
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
16
47
0
21 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
25
19
0
31 Dec 2019
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
16
102
0
30 Dec 2019
Sinkhorn Divergences for Unbalanced Optimal Transport
Thibault Séjourné
Jean Feydy
Franccois-Xavier Vialard
A. Trouvé
Gabriel Peyré
OT
9
71
0
28 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
11
116
0
03 Oct 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
14
150
0
13 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
39
624
0
14 Aug 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
A. Gretton
21
158
0
11 Jun 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
8
33
0
23 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
11
241
0
27 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
25
136
0
10 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
21
22
0
10 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
26
350
0
27 Mar 2019
Previous
1
2
3
4
Next