Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 161 papers shown
Title
Convergence of Time-Averaged Mean Field Gradient Descent Dynamics for Continuous Multi-Player Zero-Sum Games
Yulong Lu
Pierre Monmarché
MLT
29
0
0
12 May 2025
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
106
0
0
06 May 2025
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
42
0
0
06 May 2025
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
31
0
0
05 May 2025
Don't be lazy: CompleteP enables compute-efficient deep transformers
Nolan Dey
Bin Claire Zhang
Lorenzo Noci
Mufan Bill Li
Blake Bordelon
Shane Bergsma
C. Pehlevan
Boris Hanin
Joel Hestness
39
0
0
02 May 2025
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
68
0
0
11 Apr 2025
Fractal and Regular Geometry of Deep Neural Networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
S. Vigogna
MDE
AI4CE
31
0
0
08 Apr 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
56
0
0
03 Mar 2025
Geometry and Optimization of Shallow Polynomial Networks
Yossi Arjevani
Joan Bruna
Joe Kileel
Elzbieta Polak
Matthew Trager
34
1
0
10 Jan 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
59
1
0
10 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Emergence of meta-stable clustering in mean-field transformer models
Giuseppe Bruno
Federico Pasqualotto
Andrea Agazzi
45
6
0
30 Oct 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
42
1
0
21 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
61
0
0
08 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
32
3
0
22 Sep 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
27
6
0
14 Aug 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
88
2
0
08 Jul 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
38
2
0
30 May 2024
Infinite Limits of Multi-head Transformer Dynamics
Blake Bordelon
Hamza Tahir Chaudhry
C. Pehlevan
AI4CE
42
9
0
24 May 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
61
12
0
24 May 2024
Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
Huafu Liao
Alpár R. Mészáros
Chenchen Mou
Chao Zhou
26
2
0
08 Apr 2024
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
32
3
0
19 Mar 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis D. Haupt
ODL
44
3
0
12 Mar 2024
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
34
4
0
26 Dec 2023
Learning a Sparse Representation of Barron Functions with the Inverse Scale Space Flow
T. J. Heeringa
Tim Roith
Christoph Brune
Martin Burger
11
0
0
05 Dec 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
26
4
0
06 Oct 2023
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave Optimization
Mastane Achab
20
1
0
26 Sep 2023
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
32
18
0
07 Sep 2023
Kernel Limit of Recurrent Neural Networks Trained on Ergodic Data Sequences
Samuel Chun-Hei Lam
Justin A. Sirignano
K. Spiliopoulos
24
2
0
28 Aug 2023
Nonlinear Hamiltonian Monte Carlo & its Particle Approximation
Nawaf Bou-Rabee
Katharina Schuh
23
7
0
22 Aug 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
23
11
0
12 Jul 2023
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
29
1
0
10 Jul 2023
The RL Perceptron: Generalisation Dynamics of Policy Learning in High Dimensions
Nishil Patel
Sebastian Lee
Stefano Sarao Mannelli
Sebastian Goldt
Adrew Saxe
OffRL
25
3
0
17 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
27
3
0
26 May 2023
Understanding the Initial Condensation of Convolutional Neural Networks
Zhangchen Zhou
Hanxu Zhou
Yuqing Li
Zhi-Qin John Xu
MLT
AI4CE
23
5
0
17 May 2023
Performative Prediction with Neural Networks
Mehrnaz Mofakhami
Ioannis Mitliagkas
Gauthier Gidel
40
16
0
14 Apr 2023
Full Gradient Deep Reinforcement Learning for Average-Reward Criterion
Tejas Pagare
Vivek Borkar
Konstantin Avrachenkov
24
4
0
07 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
High-dimensional scaling limits and fluctuations of online least-squares SGD with smooth covariance
Krishnakumar Balasubramanian
Promit Ghosal
Ye He
28
5
0
03 Apr 2023
Matryoshka Policy Gradient for Entropy-Regularized RL: Convergence and Global Optimality
François Ged
M. H. Veiga
21
0
0
22 Mar 2023
Global Optimality of Elman-type RNN in the Mean-Field Regime
Andrea Agazzi
Jian-Xiong Lu
Sayan Mukherjee
MLT
26
1
0
12 Mar 2023
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Zheng Chen
Yuqing Li
Tao Luo
Zhaoguang Zhou
Z. Xu
MLT
AI4CE
43
8
0
12 Mar 2023
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
Atsushi Nitanda
Kazusato Oko
Denny Wu
Nobuhito Takenouchi
Taiji Suzuki
24
3
0
06 Mar 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
36
33
0
28 Feb 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
11
17
0
21 Feb 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
29
16
0
20 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
26
11
0
14 Feb 2023
Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Vitalii Konarovskyi
DiffM
26
6
0
14 Feb 2023
1
2
3
4
Next