Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 161 papers shown
Title
From high-dimensional & mean-field dynamics to dimensionless ODEs: A unifying approach to SGD in two-layers networks
Luca Arnaboldi
Ludovic Stephan
Florent Krzakala
Bruno Loureiro
MLT
30
31
0
12 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
62
2
0
02 Feb 2023
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
16
5
0
09 Jan 2023
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow
Yuling Yan
Kaizheng Wang
Philippe Rigollet
44
20
0
04 Jan 2023
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
33
36
0
14 Dec 2022
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Fan Chen
Zhenjie Ren
Song-bo Wang
43
30
0
06 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
Regression as Classification: Influence of Task Formulation on Neural Network Features
Lawrence Stewart
Francis R. Bach
Quentin Berthet
Jean-Philippe Vert
27
24
0
10 Nov 2022
Stochastic Mirror Descent in Average Ensemble Models
Taylan Kargin
Fariborz Salehi
B. Hassibi
16
1
0
27 Oct 2022
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
40
1
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
50
16
0
10 Oct 2022
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
32
10
0
04 Oct 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
23
5
0
19 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
252
313
0
11 Sep 2022
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Selina Drews
Michael Kohler
25
13
0
30 Aug 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
31
31
0
20 Jun 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
33
4
0
14 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
21
71
0
08 Jun 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
49
59
0
08 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
19
58
0
02 Jun 2022
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width
Hanxu Zhou
Qixuan Zhou
Zhenyuan Jin
Tao Luo
Yaoyu Zhang
Zhi-Qin John Xu
22
20
0
24 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Rentian Yao
Xiaohui Chen
Yun Yang
43
9
0
16 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
31
121
0
03 May 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
19
20
0
30 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
21
13
0
22 Mar 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
19
15
0
03 Mar 2022
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
27
15
0
25 Feb 2022
Provably convergent quasistatic dynamics for mean-field two-player zero-sum games
Chao Ma
Lexing Ying
MLT
24
11
0
15 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Simultaneous Transport Evolution for Minimax Equilibria on Measures
Carles Domingo-Enrich
Joan Bruna
16
3
0
14 Feb 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
10
31
0
01 Feb 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
30
3
0
28 Jan 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
59
64
0
25 Jan 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
25
65
0
19 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
22
11
0
18 Jan 2022
Asymptotic properties of one-layer artificial neural networks with sparse connectivity
Christian Hirsch
Matthias Neumann
Volker Schmidt
11
1
0
01 Dec 2021
Embedding Principle: a hierarchical structure of loss landscape of deep neural networks
Yaoyu Zhang
Yuqing Li
Zhongwang Zhang
Tao Luo
Z. Xu
21
21
0
30 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
36
13
0
03 Nov 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
47
11
0
13 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
79
10
0
13 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
42
6
0
12 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
21
13
0
12 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
91
4
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
30
11
0
06 Oct 2021
Previous
1
2
3
4
Next