ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09545
  4. Cited By
On the Global Convergence of Gradient Descent for Over-parameterized
  Models using Optimal Transport

On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport

24 May 2018
Lénaïc Chizat
Francis R. Bach
    OT
ArXivPDFHTML

Papers citing "On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"

50 / 161 papers shown
Title
From high-dimensional & mean-field dynamics to dimensionless ODEs: A
  unifying approach to SGD in two-layers networks
From high-dimensional & mean-field dynamics to dimensionless ODEs: A unifying approach to SGD in two-layers networks
Luca Arnaboldi
Ludovic Stephan
Florent Krzakala
Bruno Loureiro
MLT
30
31
0
12 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
62
2
0
02 Feb 2023
On adversarial robustness and the use of Wasserstein ascent-descent
  dynamics to enforce it
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
16
5
0
09 Jan 2023
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient
  Flow
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow
Yuling Yan
Kaizheng Wang
Philippe Rigollet
44
20
0
04 Jan 2023
Learning threshold neurons via the "edge of stability"
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
33
36
0
14 Dec 2022
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Fan Chen
Zhenjie Ren
Song-bo Wang
43
30
0
06 Dec 2022
Infinite-width limit of deep linear neural networks
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
Regression as Classification: Influence of Task Formulation on Neural
  Network Features
Regression as Classification: Influence of Task Formulation on Neural Network Features
Lawrence Stewart
Francis R. Bach
Quentin Berthet
Jean-Philippe Vert
27
24
0
10 Nov 2022
Stochastic Mirror Descent in Average Ensemble Models
Stochastic Mirror Descent in Average Ensemble Models
Taylan Kargin
Fariborz Salehi
B. Hassibi
16
1
0
27 Oct 2022
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
40
1
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
50
16
0
10 Oct 2022
Analysis of the rate of convergence of an over-parametrized deep neural
  network estimate learned by gradient descent
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
32
10
0
04 Oct 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule
  based on example difficulty
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
23
5
0
19 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the
  ugly (initialization)
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
252
313
0
11 Sep 2022
On the universal consistency of an over-parametrized deep neural network
  estimate learned by gradient descent
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Selina Drews
Michael Kohler
25
13
0
30 Aug 2022
Neural Networks can Learn Representations with Gradient Descent
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso
  for quadratic parametrisation
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
31
31
0
20 Jun 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
33
4
0
14 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
21
71
0
08 Jun 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical
  scaling
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
49
59
0
08 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and
  orthogonal inputs
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
19
58
0
02 Jun 2022
Empirical Phase Diagram for Three-layer Neural Networks with Infinite
  Width
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width
Hanxu Zhou
Qixuan Zhou
Zhenyuan Jin
Tao Luo
Yaoyu Zhang
Zhi-Qin John Xu
22
20
0
24 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide
  Neural Networks
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Rentian Yao
Xiaohui Chen
Yun Yang
43
9
0
16 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step
  Improves the Representation
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
31
121
0
03 May 2022
Convergence of gradient descent for deep neural networks
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
19
20
0
30 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different
  Learning Regimes
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
21
13
0
22 Mar 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet
  Transform based on Helgason-Fourier Analysis
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
19
15
0
03 Mar 2022
A blob method for inhomogeneous diffusion with applications to
  multi-agent control and sampling
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
27
15
0
25 Feb 2022
Provably convergent quasistatic dynamics for mean-field two-player
  zero-sum games
Provably convergent quasistatic dynamics for mean-field two-player zero-sum games
Chao Ma
Lexing Ying
MLT
24
11
0
15 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in
  Neural Networks
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Simultaneous Transport Evolution for Minimax Equilibria on Measures
Carles Domingo-Enrich
Joan Bruna
16
3
0
14 Feb 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional
  two-layer neural networks
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
10
31
0
01 Feb 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic
  Gradient Descent for Shallow Neural Networks
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
30
3
0
28 Jan 2022
Convex Analysis of the Mean Field Langevin Dynamics
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
59
64
0
25 Jan 2022
Overview frequency principle/spectral bias in deep learning
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
25
65
0
19 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural
  Network Approximation in the Mean-Field Regime
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
22
11
0
18 Jan 2022
Asymptotic properties of one-layer artificial neural networks with
  sparse connectivity
Asymptotic properties of one-layer artificial neural networks with sparse connectivity
Christian Hirsch
Matthias Neumann
Volker Schmidt
11
1
0
01 Dec 2021
Embedding Principle: a hierarchical structure of loss landscape of deep
  neural networks
Embedding Principle: a hierarchical structure of loss landscape of deep neural networks
Yaoyu Zhang
Yuqing Li
Zhongwang Zhang
Tao Luo
Z. Xu
21
21
0
30 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
36
13
0
03 Nov 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows
  Converge to Extreme Points of the Dual Convex Program
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
47
11
0
13 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
79
10
0
13 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix
  Completion
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
42
6
0
12 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
  on Pruned Neural Networks
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
21
13
0
12 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
91
4
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in
  the mean-field regime
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
30
11
0
06 Oct 2021
Previous
1234
Next