Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.11118
Cited By
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
50 / 266 papers shown
Title
A dynamic view of the double descent
Vivek Shripad Borkar
58
0
0
03 May 2025
Redundancy Analysis and Mitigation for Machine Learning-Based Process Monitoring of Additive Manufacturing
Jiarui Xie
Y. Zhao
49
0
0
30 Apr 2025
Sobolev norm inconsistency of kernel interpolation
Yunfei Yang
34
0
0
29 Apr 2025
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers
Roman Abramov
Felix Steinbauer
Gjergji Kasneci
138
0
0
29 Apr 2025
The Double Descent Behavior in Two Layer Neural Network for Binary Classification
Chathurika S Abeykoon
A. Beknazaryan
Hailin Sang
51
1
0
27 Apr 2025
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
Arjun Subramonian
Elvis Dohmatob
24
0
0
14 Apr 2025
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
59
0
0
11 Apr 2025
Analyzing the Role of Permutation Invariance in Linear Mode Connectivity
Keyao Zhan
Puheng Li
Lei Wu
MoMe
79
0
0
13 Mar 2025
On the Relationship Between Double Descent of CNNs and Shape/Texture Bias Under Learning Process
Shun Iwase
Shuya Takahashi
Nakamasa Inoue
Rio Yokota
Ryo Nakamura
Hirokatsu Kataoka
74
0
0
04 Mar 2025
From Small to Large Language Models: Revisiting the Federalist Papers
So Won Jeong
Veronika Rockova
37
0
0
25 Feb 2025
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
96
14
0
11 Feb 2025
The late-stage training dynamics of (stochastic) subgradient descent on homogeneous neural networks
Sholom Schechtman
Nicolas Schreuder
147
0
0
08 Feb 2025
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
77
2
0
28 Jan 2025
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
60
0
0
31 Dec 2024
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Xiaosi Gu
Tomoyuki Obuchi
69
0
0
29 Nov 2024
Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
Akhiad Bercovich
Tomer Ronen
Talor Abramovich
Nir Ailon
Nave Assaf
...
Ido Shahaf
Oren Tropp
Omer Ullman Argov
Ran Zilberstein
Ran El-Yaniv
77
1
0
28 Nov 2024
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Jim Zhao
Sidak Pal Singh
Aurélien Lucchi
AI4CE
43
0
0
04 Nov 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
Understanding Model Ensemble in Transferable Adversarial Attack
Wei Yao
Zeliang Zhang
Huayi Tang
Yong Liu
33
2
0
09 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
61
0
0
08 Oct 2024
Investigating the Impact of Model Complexity in Large Language Models
Jing Luo
Huiyuan Wang
Weiran Huang
34
0
0
01 Oct 2024
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
37
4
0
24 Sep 2024
Monomial Matrix Group Equivariant Neural Functional Networks
Hoang V. Tran
Thieu N. Vo
Tho H. Tran
An T. Nguyen
Tan M. Nguyen
54
5
0
18 Sep 2024
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
39
2
0
09 Sep 2024
Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning
Mohammadamin Banayeeanzade
Mahdi Soltanolkotabi
Mohammad Rostami
CLL
LRM
95
1
0
29 Aug 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
42
0
0
24 Aug 2024
Can all variations within the unified mask-based beamformer framework achieve identical peak extraction performance?
Atsuo Hiroe
Katsutoshi Itoyama
Kazuhiro Nakadai
35
0
0
22 Jul 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
91
2
0
08 Jul 2024
Beyond Performance Plateaus: A Comprehensive Study on Scalability in Speech Enhancement
Wangyou Zhang
Kohei Saijo
Jee-weon Jung
Chenda Li
Shinji Watanabe
Yanmin Qian
32
4
0
06 Jun 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
41
1
0
01 Jun 2024
A Margin-based Multiclass Generalization Bound via Geometric Complexity
Michael Munn
Benoit Dherin
Javier Gonzalvo
UQCV
40
2
0
28 May 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
C. Pehlevan
23
10
0
20 May 2024
Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
Xueyan Niu
Bo Bai
Lei Deng
Wei Han
31
6
0
14 May 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
62
1
0
03 Apr 2024
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
Jérémie Bigot
Issa-Mbenard Dabo
Camille Male
29
4
0
29 Mar 2024
Deep Confident Steps to New Pockets: Strategies for Docking Generalization
Gabriele Corso
Arthur Deng
Benjamin Fry
Nicholas Polizzi
Regina Barzilay
Tommi Jaakkola
OOD
37
27
0
28 Feb 2024
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Kernel PCA for Out-of-Distribution Detection
Kun Fang
Qinghua Tao
Kexin Lv
M. He
Xiaolin Huang
Jie-jin Yang
OODD
46
2
0
05 Feb 2024
Manipulating Sparse Double Descent
Ya Shi Zhang
19
0
0
19 Jan 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
14
0
0
08 Jan 2024
Predictive variational autoencoder for learning robust representations of time-series data
Julia Huiming Wang
Dexter Tsin
Tatiana Engel
CML
OOD
AI4TS
30
2
0
12 Dec 2023
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
25
2
0
24 Nov 2023
A decorrelation method for general regression adjustment in randomized experiments
Fangzhou Su
Wenlong Mou
Peng Ding
Martin J. Wainwright
19
1
0
16 Nov 2023
Unified machine learning tasks and datasets for enhancing renewable energy
Arsam Aryandoust
Thomas Rigoni
Francesco di Stefano
Anthony Patt
37
0
0
12 Nov 2023
Changing the Kernel During Training Leads to Double Descent in Kernel Regression
Oskar Allerbo
30
0
0
03 Nov 2023
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Divin Yan
Gengchen Wei
Chen Yang
Shengzhong Zhang
Zengfeng Huang
AI4CE
38
11
0
28 Oct 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
34
1
0
13 Sep 2023
MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical Image Segmentation
Liang Xu
Mingxi Chen
Yiyu Cheng
Pengfei Shao
Shuwei Shen
Peng Yao
Ronald X. Xu
ViT
32
0
0
27 Jul 2023
Are Transformers with One Layer Self-Attention Using Low-Rank Weight Matrices Universal Approximators?
T. Kajitsuka
Issei Sato
29
16
0
26 Jul 2023
What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety Critical Systems
Saddek Bensalem
Chih-Hong Cheng
Wei Huang
Xiaowei Huang
Changshun Wu
Xingyu Zhao
AAML
21
6
0
20 Jul 2023
1
2
3
4
5
6
Next