Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1812.11118
Cited By
v1
v2 (latest)
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
50 / 942 papers shown
Title
Ensemble Kernel Methods, Implicit Regularization and Determinantal Point Processes
J. Schreurs
Michaël Fanuel
Johan A. K. Suykens
263
2
0
24 Jun 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Nature Communications (Nat Commun), 2020
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
503
221
0
23 Jun 2020
Good Classifiers are Abundant in the Interpolating Regime
Ryan Theisen
Jason M. Klusowski
Michael W. Mahoney
143
2
0
22 Jun 2020
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
240
174
0
22 Jun 2020
Statistical and Algorithmic Insights for Semi-supervised Learning with Self-training
Samet Oymak
Talha Cihad Gulcu
181
22
0
19 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
178
4
0
19 Jun 2020
MARS: Masked Automatic Ranks Selection in Tensor Decompositions
M. Kodryan
D. Kropotov
Dmitry Vetrov
290
10
0
18 Jun 2020
The Recurrent Neural Tangent Kernel
Sina Alemohammad
Zichao Wang
Randall Balestriero
Richard Baraniuk
AAML
183
81
0
18 Jun 2020
On Sparsity in Overparametrised Shallow ReLU Networks
Jaume de Dios
Joan Bruna
117
14
0
18 Jun 2020
Revisiting minimum description length complexity in overparameterized models
Raaz Dwivedi
Chandan Singh
Bin Yu
Martin J. Wainwright
403
5
0
17 Jun 2020
Interpolation and Learning with Scale Dependent Kernels
Nicolò Pagliana
Alessandro Rudi
Ernesto De Vito
Lorenzo Rosasco
287
8
0
17 Jun 2020
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
207
35
0
16 Jun 2020
On the training dynamics of deep networks with
L
2
L_2
L
2
regularization
Aitor Lewkowycz
Guy Gur-Ari
261
63
0
15 Jun 2020
The role of optimization geometry in single neuron learning
Nicholas M. Boffi
Stephen Tu
Jean-Jacques E. Slotine
120
1
0
15 Jun 2020
Overparameterization and generalization error: weighted trigonometric interpolation
Yuege Xie
H. Chou
Holger Rauhut
Rachel A. Ward
90
3
0
15 Jun 2020
Assumption-lean inference for generalised linear model parameters
S. Vansteelandt
O. Dukes
CML
274
65
0
15 Jun 2020
Double Double Descent: On Generalization Errors in Transfer Learning between Linear Regression Tasks
SIAM Journal on Mathematics of Data Science (SIMODS), 2020
Yehuda Dar
Richard G. Baraniuk
415
20
0
12 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Damien Scieur
Nicolas Le Roux
104
8
0
11 Jun 2020
Is deep learning necessary for simple classification tasks?
Genetic Programming and Evolvable Machines (GPEM), 2020
Joseph D. Romano
Trang T. Le
Weixuan Fu
J. Moore
221
22
0
11 Jun 2020
Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization
Neural Information Processing Systems (NeurIPS), 2020
Benjamin Aubin
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
240
62
0
11 Jun 2020
Asymptotics of Ridge (less) Regression under General Source Condition
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Dominic Richards
Jaouad Mourtada
Lorenzo Rosasco
229
82
0
11 Jun 2020
Recovery and Generalization in Over-Realized Dictionary Learning
Journal of machine learning research (JMLR), 2020
Jeremias Sulam
Chong You
Zhihui Zhu
FedML
224
8
0
11 Jun 2020
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
189
96
0
09 Jun 2020
Double Descent Risk and Volume Saturation Effects: A Geometric Perspective
Prasad Cheema
M. Sugiyama
228
3
0
08 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
288
111
0
05 Jun 2020
Triple descent and the two kinds of overfitting: Where & why do they appear?
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
210
84
0
05 Jun 2020
Ridge Regularizaton: an Essential Concept in Data Science
Trevor Hastie
130
99
0
30 May 2020
On lower bounds for the bias-variance trade-off
Annals of Statistics (Ann. Stat.), 2020
A. Derumigny
Johannes Schmidt-Hieber
354
9
0
30 May 2020
Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures
Fanghui Liu
Xiaolin Huang
Yingyi Chen
Johan A. K. Suykens
198
0
0
30 May 2020
Machine Learning-Based Unbalance Detection of a Rotating Shaft Using Vibration Data
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2020
Oliver Mey
Willi Neudeck
André Schneider
Olaf Enge-Rosenblatt
116
35
0
26 May 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
179
5
0
26 May 2020
Gradient Monitored Reinforcement Learning
IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
148
13
0
25 May 2020
The Random Feature Model for Input-Output Maps between Banach Spaces
Nicholas H. Nelsen
Andrew M. Stuart
280
162
0
20 May 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
254
165
0
16 May 2020
Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones?
Nadezhda Chirkova
E. Lobacheva
Dmitry Vetrov
OOD
MoE
93
9
0
14 May 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Abigail Z. Jacobs
488
409
0
09 May 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
194
91
0
07 May 2020
A framework for probabilistic weather forecast post-processing across models and lead times using machine learning
Charlie Kirkwood
T. Economou
H. Odbert
N. Pugeault
100
34
0
06 May 2020
Understanding and Improving Information Transfer in Multi-Task Learning
International Conference on Learning Representations (ICLR), 2020
Sen Wu
Hongyang R. Zhang
Christopher Ré
180
173
0
02 May 2020
Generalization Error of Generalized Linear Models in High Dimensions
International Conference on Machine Learning (ICML), 2020
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
AI4CE
111
40
0
01 May 2020
Generalization Error for Linear Regression under Distributed Learning
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
FedML
94
6
0
30 Apr 2020
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
Journal of machine learning research (JMLR), 2020
Niladri S. Chatterji
Philip M. Long
193
114
0
25 Apr 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
413
188
0
23 Apr 2020
Mehler's Formula, Branching Process, and Compositional Kernels of Deep Neural Networks
Journal of the American Statistical Association (JASA), 2020
Tengyuan Liang
Hai Tran-Bach
136
11
0
09 Apr 2020
A Brief Prehistory of Double Descent
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020
Marco Loog
T. Viering
A. Mey
Jesse H. Krijthe
David Tax
132
74
0
07 Apr 2020
Going in circles is the way forward: the role of recurrence in visual inference
Current Opinion in Neurobiology (Curr Opin Neurobiol), 2020
R. S. V. Bergen
N. Kriegeskorte
288
90
0
26 Mar 2020
Dimension Independent Generalization Error by Stochastic Gradient Descent
Xi Chen
Qiang Liu
Xin T. Tong
120
1
0
25 Mar 2020
Neural Networks and Polynomial Regression. Demystifying the Overparametrization Phenomena
Matt Emschwiller
D. Gamarnik
Eren C. Kizildag
Ilias Zadik
142
9
0
23 Mar 2020
Weak and Strong Gradient Directions: Explaining Memorization, Generalization, and Hardness of Examples at Scale
Piotr Zielinski
Shankar Krishnan
S. Chatterjee
ODL
200
2
0
16 Mar 2020
BayesFlow: Learning complex stochastic models with invertible neural networks
IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
584
241
0
13 Mar 2020
Previous
1
2
3
...
16
17
18
19
Next