Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1812.11118
Cited By
v1
v2 (latest)
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
38 / 938 papers shown
Title
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck
Neural Information Processing Systems (NeurIPS), 2019
Maximilian Igl
K. Ciosek
Yingzhen Li
Sebastian Tschiatschek
Cheng Zhang
Sam Devlin
Katja Hofmann
OffRL
175
187
0
28 Oct 2019
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Adaptive Agents and Multi-Agent Systems (AAMAS), 2019
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Dong Wang
223
52
0
24 Oct 2019
Causal bootstrapping
Max A. Little
Reham Badawy
CML
129
21
0
21 Oct 2019
The Implicit Regularization of Ordinary Least Squares Ensembles
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Daniel LeJeune
Hamid Javadi
Richard G. Baraniuk
200
46
0
10 Oct 2019
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
Neural Networks (NN), 2019
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
249
439
0
09 Oct 2019
A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case
International Conference on Learning Representations (ICLR), 2019
Greg Ongie
Rebecca Willett
Daniel Soudry
Nathan Srebro
183
169
0
03 Oct 2019
Predicting materials properties without crystal structure: Deep representation learning from stoichiometry
Nature Communications (Nat Commun), 2019
Rhys E. A. Goodall
A. Lee
189
293
0
01 Oct 2019
Overparameterized Neural Networks Implement Associative Memory
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
199
76
0
26 Sep 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
International Conference on Learning Representations (ICLR), 2019
Boris Hanin
Mihai Nica
MDE
185
162
0
13 Sep 2019
Learning Algebraic Models of Quantum Entanglement
Quantum Information Processing (QIP), 2019
Hamza Jaffali
Luke Oeding
150
10
0
27 Aug 2019
Implicit Deep Learning
SIAM Journal on Mathematics of Data Science (SIMODS), 2019
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
331
198
0
17 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Communications on Pure and Applied Mathematics (CPAM), 2019
Song Mei
Andrea Montanari
461
669
0
14 Aug 2019
Behaviour Suite for Reinforcement Learning
International Conference on Learning Representations (ICLR), 2019
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
...
Satinder Singh
Benjamin Van Roy
R. Sutton
David Silver
H. V. Hasselt
OffRL
221
196
0
09 Aug 2019
On the Existence of Simpler Machine Learning Models
Conference on Fairness, Accountability and Transparency (FAccT), 2019
Lesia Semenova
Cynthia Rudin
Ronald E. Parr
313
107
0
05 Aug 2019
Minimizers of the Empirical Risk and Risk Monotonicity
Neural Information Processing Systems (NeurIPS), 2019
Marco Loog
T. Viering
A. Mey
190
30
0
11 Jul 2019
Benign Overfitting in Linear Regression
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
369
847
0
26 Jun 2019
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
Neural Information Processing Systems (NeurIPS), 2019
Stéphane dÁscoli
Levent Sagun
Joan Bruna
Giulio Biroli
150
37
0
16 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Symposium on the Theory of Computing (STOC), 2019
Vitaly Feldman
TDI
519
575
0
12 Jun 2019
The Generalization-Stability Tradeoff In Neural Network Pruning
Neural Information Processing Systems (NeurIPS), 2019
Brian Bartoldson
Ari S. Morcos
Adrian Barbu
G. Erlebacher
273
84
0
09 Jun 2019
Understanding overfitting peaks in generalization error: Analytical risk curves for
l
2
l_2
l
2
and
l
1
l_1
l
1
penalized interpolation
P. Mitra
176
50
0
09 Jun 2019
Implicit Rugosity Regularization via Data Augmentation
Daniel LeJeune
Randall Balestriero
Hamid Javadi
Richard G. Baraniuk
178
4
0
28 May 2019
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness
Neural Networks (NN), 2019
Pengzhan Jin
Lu Lu
Yifa Tang
George Karniadakis
302
64
0
27 May 2019
Linearized two-layers neural networks in high dimension
Annals of Statistics (Ann. Stat.), 2019
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
222
255
0
27 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
232
114
0
15 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
359
143
0
10 Apr 2019
Regularized Learning for Domain Adaptation under Label Shifts
Kamyar Azizzadenesheli
Anqi Liu
Fanny Yang
Anima Anandkumar
118
217
0
22 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Annals of Statistics (Ann. Stat.), 2019
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
799
809
0
19 Mar 2019
Two models of double descent for weak features
SIAM Journal on Mathematics of Data Science (SIMODS), 2019
M. Belkin
Daniel J. Hsu
Ji Xu
304
392
0
18 Mar 2019
Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware
Shiwei Liu
Decebal Constantin Mocanu
A. R. Ramapuram Matavalam
Yulong Pei
Mykola Pechenizkiy
BDL
260
94
0
26 Jan 2019
Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits
Xialiang Dou
Tengyuan Liang
MLT
228
42
0
21 Jan 2019
Scaling description of generalization with number of parameters in deep learning
Mario Geiger
Arthur Jacot
S. Spigler
Franck Gabriel
Levent Sagun
Stéphane dÁscoli
Giulio Biroli
Clément Hongler
Matthieu Wyart
264
203
0
06 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Tian Ding
435
41
0
28 Dec 2018
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Damien Scieur
Alexia Jolicoeur-Martineau
191
178
0
19 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
314
122
0
17 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
337
229
0
02 Oct 2018
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
221
155
0
11 Jun 2018
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
D. Kobak
Jonathan Lomond
Benoit Sanchez
210
96
0
28 May 2018
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
249
495
0
10 Oct 2017
Previous
1
2
3
...
17
18
19