Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1812.11118
Cited By
v1
v2 (latest)
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
50 / 945 papers shown
More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory
James B. Simon
Dhruva Karkada
Nikhil Ghosh
Mikhail Belkin
AI4CE
BDL
455
22
0
24 Nov 2023
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
190
4
0
24 Nov 2023
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Physical Review Research (Phys. Rev. Res.), 2023
Markus Gross
A. Raulf
Christoph Räth
461
0
0
23 Nov 2023
A decorrelation method for general regression adjustment in randomized experiments
Fangzhou Su
Wenlong Mou
Peng Ding
Martin J. Wainwright
179
2
0
16 Nov 2023
Bias-Reduced Neural Networks for Parameter Estimation in Quantitative MRI
Magnetic Resonance in Medicine (MRM), 2023
Andrew Mao
Sebastian Flassbeck
Jakob Assländer
171
3
0
13 Nov 2023
A PAC-Bayesian Perspective on the Interpolating Information Criterion
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
275
2
0
13 Nov 2023
Unified machine learning tasks and datasets for enhancing renewable energy
Arsam Aryandoust
Thomas Rigoni
Francesco di Stefano
Anthony Patt
197
0
0
12 Nov 2023
Minimum norm interpolation by perceptra: Explicit regularization and implicit bias
Neural Information Processing Systems (NeurIPS), 2023
Jiyoung Park
Ian Pelakh
Stephan Wojtowytsch
215
1
0
10 Nov 2023
Why Do Probabilistic Clinical Models Fail To Transport Between Sites?
Thomas A. Lasko
Eric V. Strobl
William W Stead
OOD
232
19
0
08 Nov 2023
Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization
Elan Rosenfeld
Andrej Risteski
270
15
0
07 Nov 2023
AdaFlood: Adaptive Flood Regularization
Wonho Bae
Yi Ren
Mohamad Osama Ahmed
Frederick Tung
Danica J. Sutherland
Gabriel L. Oliveira
AI4CE
202
3
0
06 Nov 2023
VFCFinder: Seamlessly Pairing Security Advisories and Patches
T. Dunlap
Elizabeth Lin
William Enck
Bradley Reaves
148
6
0
02 Nov 2023
Optimal Algorithms for Online Convex Optimization with Adversarial Constraints
Neural Information Processing Systems (NeurIPS), 2023
Abhishek Sinha
Rahul Vaze
200
24
0
29 Oct 2023
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Neural Information Processing Systems (NeurIPS), 2023
Divin Yan
Gengchen Wei
Chen Yang
Shengzhong Zhang
Zengfeng Huang
AI4CE
482
21
0
28 Oct 2023
Boosting Generalization with Adaptive Style Techniques for Fingerprint Liveness Detection
Kexin Zhu
Bo Lin
Yang Qiu
Adam Yule
Yao Tang
Jiajun Liang
211
0
0
20 Oct 2023
Unraveling the Enigma of Double Descent: An In-depth Analysis through the Lens of Learned Feature Space
Yufei Gu
Xiaoqing Zheng
T. Aste
288
5
0
20 Oct 2023
Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free Ensembles of DNNs
Uri Stern
D. Weinshall
CLL
219
0
0
17 Oct 2023
Regularization properties of adversarially-trained linear regression
Neural Information Processing Systems (NeurIPS), 2023
Antônio H. Ribeiro
Dave Zachariah
Francis Bach
Thomas B. Schön
AAML
249
18
0
16 Oct 2023
It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep Models
Lin Chen
Michal Lukasik
Wittawat Jitkrittum
Chong You
Sanjiv Kumar
338
1
0
13 Oct 2023
Towards Demystifying the Generalization Behaviors When Neural Collapse Emerges
Peifeng Gao
Qianqian Xu
Jianlong Wu
Peisong Wen
Huiyang Shao
Zhiyong Yang
Guohao Li
Qingming Huang
AAML
289
5
0
12 Oct 2023
Orthogonal Random Features: Explicit Forms and Sharp Inequalities
N. Demni
Hachem Kadri
219
1
0
11 Oct 2023
Can pre-trained models assist in dataset distillation?
Yao Lu
Xuguang Chen
Yuchen Zhang
Jianyang Gu
Tianle Zhang
Yifan Zhang
Xiaoniu Yang
Qi Xuan
Kai Wang
Yang You
DD
260
14
0
05 Oct 2023
Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data
International Conference on Machine Learning (ICML), 2023
Xuran Meng
Difan Zou
Yuan Cao
MLT
259
10
0
03 Oct 2023
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression
Neural Information Processing Systems (NeurIPS), 2023
Tin Sum Cheng
Aurelien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
242
8
0
02 Oct 2023
Memorization with neural nets: going beyond the worst case
S. Dirksen
Patrick Finke
Martin Genzel
264
1
0
30 Sep 2023
Optimal Nonlinearities Improve Generalization Performance of Random Features
Asian Conference on Machine Learning (ACML), 2023
Samet Demir
Zafer Dogan
MLT
110
4
0
28 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
281
35
0
28 Sep 2023
On the Asymptotic Learning Curves of Kernel Ridge Regression under Power-law Decay
Neural Information Processing Systems (NeurIPS), 2023
Yicheng Li
Hao Zhang
Qian Lin
221
17
0
23 Sep 2023
A Spectral Theory of Neural Prediction and Alignment
Neural Information Processing Systems (NeurIPS), 2023
Abdulkadir Canatar
J. Feather
Albert J. Wakhloo
SueYeon Chung
OOD
274
19
0
22 Sep 2023
Neural Collapse for Unconstrained Feature Model under Cross-entropy Loss with Imbalanced Data
Journal of machine learning research (JMLR), 2023
Wanli Hong
Shuyang Ling
221
30
0
18 Sep 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
308
1
0
13 Sep 2023
Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth Soft-Thresholding
IEEE Transactions on Signal Processing (IEEE TSP), 2023
Shaik Basheeruddin Shah
Pradyumna Pradhan
Wei Pu
Ramunaidu Randhi
Miguel R. D. Rodrigues
Yonina C. Eldar
284
13
0
12 Sep 2023
Ensemble linear interpolators: The role of ensembling
Mingqi Wu
Qiang Sun
254
2
0
06 Sep 2023
No Data Augmentation? Alternative Regularizations for Effective Training on Small Datasets
Lorenzo Brigato
Stavroula Mougiakakou
204
5
0
04 Sep 2023
The Quest of Finding the Antidote to Sparse Double Descent
Victor Quétu
Marta Milovanović
299
0
0
31 Aug 2023
Least Squares Maximum and Weighted Generalization-Memorization Machines
Shuai Wang
Zhen Wang
Yuanfu Shao
159
1
0
31 Aug 2023
Six Lectures on Linearized Neural Networks
Journal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech.), 2023
Theodor Misiakiewicz
Andrea Montanari
350
18
0
25 Aug 2023
On High-Dimensional Asymptotic Properties of Model Averaging Estimators
Ryo Ando
F. Komaki
MoMe
110
6
0
18 Aug 2023
Size Lowerbounds for Deep Operator Networks
Anirbit Mukherjee
Amartya Roy
AI4CE
296
6
0
11 Aug 2023
Memory capacity of two layer neural networks with smooth activations
SIAM Journal on Mathematics of Data Science (SIMODS), 2023
Liam Madden
Christos Thrampoulidis
MLT
310
7
0
03 Aug 2023
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning
IEEE Signal Processing Magazine (IEEE Signal Process. Mag.), 2023
Yihua Zhang
Prashant Khanduri
Ioannis C. Tsaknakis
Yuguang Yao
Min-Fong Hong
Sijia Liu
AI4CE
373
48
0
01 Aug 2023
MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical Image Segmentation
Liang Xu
Mingxi Chen
Yiyu Cheng
Pengfei Shao
Shuwei Shen
Peng Yao
Ronald X. Xu
ViT
183
0
0
27 Jul 2023
Revisiting the Performance-Explainability Trade-Off in Explainable Artificial Intelligence (XAI)
Barnaby Crook
Maximilian Schluter
Timo Speith
172
28
0
26 Jul 2023
Are Transformers with One Layer Self-Attention Using Low-Rank Weight Matrices Universal Approximators?
International Conference on Learning Representations (ICLR), 2023
T. Kajitsuka
Issei Sato
448
28
0
26 Jul 2023
Data-Induced Interactions of Sparse Sensors Using Statistical Physics
A. Klishin
J. Nathan Kutz
Krithika Manohar
109
6
0
21 Jul 2023
What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety Critical Systems
Saddek Bensalem
Chih-Hong Cheng
Wei Huang
Xiaowei Huang
Changshun Wu
Xingyu Zhao
AAML
249
10
0
20 Jul 2023
Optimizing PatchCore for Few/many-shot Anomaly Detection
Joao Santos
Triet Tran
Oliver Rippel
310
18
0
20 Jul 2023
Does Double Descent Occur in Self-Supervised Learning?
A. Lupidi
Yonatan Gideoni
Dulhan Jayalath
SSL
148
3
0
15 Jul 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
239
10
0
15 Jul 2023
Large Language Models
Communications of the ACM (CACM), 2023
Michael R Douglas
LLMAG
LM&MA
599
935
0
11 Jul 2023
Previous
1
2
3
...
5
6
7
...
17
18
19
Next