Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1812.11118
Cited By
v1
v2 (latest)
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
50 / 945 papers shown
Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
Xueyan Niu
Bo Bai
Lei Deng
Wei Han
229
14
0
14 May 2024
Scalable Subsampling Inference for Deep Neural Networks
ACM / IMS Journal of Data Science (JIDS), 2024
Kejin Wu
D. Politis
164
3
0
14 May 2024
Class-wise Activation Unravelling the Engima of Deep Double Descent
Yufei Gu
138
0
0
13 May 2024
Data-Error Scaling Laws in Machine Learning on Combinatorial Mutation-prone Sets: Proteins and Small Molecules
Vanni Doffini
O. A. von Lilienfeld
Michael A. Nash
222
1
0
08 May 2024
Finite Sample Analysis and Bounds of Generalization Error of Gradient Descent in In-Context Linear Regression
Karthik Duraisamy
MLT
285
4
0
03 May 2024
Position: Why We Must Rethink Empirical Research in Machine Learning
International Conference on Machine Learning (ICML), 2024
Moritz Herrmann
F. J. D. Lange
Katharina Eggensperger
Giuseppe Casalicchio
Marcel Wever
Matthias Feurer
David Rügamer
Eyke Hüllermeier
A. Boulesteix
B. Bischl
253
23
0
03 May 2024
Deep neural networks for choice analysis: Enhancing behavioral regularity with gradient regularization
Siqi Feng
Rui Yao
Stephane Hess
Ricardo A. Daziano
Timothy Brathwaite
Joan Walker
Shenhao Wang
154
7
0
23 Apr 2024
Solution space and storage capacity of fully connected two-layer neural networks with generic activation functions
Sota Nishiyama
Masayuki Ohzeki
257
2
0
20 Apr 2024
When Life gives you LLMs, make LLM-ADE: Large Language Models with Adaptive Data Engineering
Stephen Choi
William Gazeley
KELM
181
4
0
19 Apr 2024
The phase diagram of kernel interpolation in large dimensions
Haobo Zhang
Weihao Lu
Qian Lin
154
7
0
19 Apr 2024
From Protoscience to Epistemic Monoculture: How Benchmarking Set the Stage for the Deep Learning Revolution
Bernard J. Koch
David Peterson
189
15
0
09 Apr 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
363
2
0
03 Apr 2024
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
Jérémie Bigot
Issa-Mbenard Dabo
Camille Male
460
5
0
29 Mar 2024
On the Benefits of Over-parameterization for Out-of-Distribution Generalization
Yifan Hao
Yong Lin
Difan Zou
Tong Zhang
OODD
OOD
245
6
0
26 Mar 2024
Understanding the Double Descent Phenomenon in Deep Learning
Marc Lafon
Alexandre Thomas
347
4
0
15 Mar 2024
Benign overfitting in leaky ReLU networks with moderate input dimension
Neural Information Processing Systems (NeurIPS), 2024
Kedar Karhadkar
Erin E. George
Michael Murray
Guido Montúfar
Deanna Needell
MLT
246
2
0
11 Mar 2024
When do Convolutional Neural Networks Stop Learning?
Sahan Ahmad
Gabriel Trahan
Aminul Islam
OOD
SSL
161
0
0
04 Mar 2024
Masks, Signs, And Learning Rate Rewinding
Advait Gadhikar
R. Burkholz
229
14
0
29 Feb 2024
Deep Confident Steps to New Pockets: Strategies for Docking Generalization
Gabriele Corso
Arthur Deng
Benjamin Fry
Nicholas Polizzi
Regina Barzilay
Tommi Jaakkola
OOD
275
65
0
28 Feb 2024
Unified View of Grokking, Double Descent and Emergent Abilities: A Perspective from Circuits Competition
Yufei Huang
Shengding Hu
Xu Han
Zhiyuan Liu
Maosong Sun
249
22
0
23 Feb 2024
Chain-of-Thought Unfaithfulness as Disguised Accuracy
Oliver Bentham
Nathan Stringham
Ana Marasović
LRM
HILM
342
23
0
22 Feb 2024
Asymptotics of Learning with Deep Structured (Random) Features
Dominik Schröder
Daniil Dmitriev
Hugo Cui
Bruno Loureiro
263
10
0
21 Feb 2024
Connecting Algorithmic Fairness to Quality Dimensions in Machine Learning in Official Statistics and Survey Production
Patrick Oliver Schenk
Christoph Kern
FaML
280
4
0
14 Feb 2024
Stochastic Gradient Flow Dynamics of Test Risk and its Exact Solution for Weak Features
Rodrigo Veiga
Anastasia Remizova
Nicolas Macris
263
1
0
12 Feb 2024
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
317
11
0
12 Feb 2024
Generalization Error of Graph Neural Networks in the Mean-field Regime
International Conference on Machine Learning (ICML), 2024
Gholamali Aminian
Yixuan He
Gesine Reinert
Lukasz Szpruch
Samuel N. Cohen
373
4
0
10 Feb 2024
Neural Networks Learn Statistics of Increasing Complexity
Nora Belrose
Quintin Pope
Lucia Quirke
Alex Troy Mallen
Xiaoli Z. Fern
236
19
0
06 Feb 2024
Kernel PCA for Out-of-Distribution Detection
Neural Information Processing Systems (NeurIPS), 2024
Kun Fang
Qinghua Tao
Kexin Lv
Mingzhen He
Xiaolin Huang
Jie Yang
OODD
359
14
0
05 Feb 2024
On the Role of Initialization on the Implicit Bias in Deep Linear Networks
Oria Gruber
H. Avron
AI4CE
155
1
0
04 Feb 2024
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Alicia Curth
Alan Jeffares
M. Schaar
UQCV
204
16
0
02 Feb 2024
Effect of Weight Quantization on Learning Models by Typical Case Analysis
Shuhei Kashiwamura
Ayaka Sakata
Masaaki Imaizumi
MQ
238
3
0
30 Jan 2024
Accelerating superconductor discovery through tempered deep learning of the electron-phonon spectral function
Jason B. Gibson
A. Hire
P. M. Dee
Oscar Barrera
Benjamin Geisler
P. Hirschfeld
R. G. Hennig
157
12
0
29 Jan 2024
Can overfitted deep neural networks in adversarial training generalize? -- An approximation viewpoint
Zhongjie Shi
Fanghui Liu
Yuan Cao
Johan A. K. Suykens
233
0
0
24 Jan 2024
The twin peaks of learning neural networks
Elizaveta Demyanenko
Christoph Feinauer
Enrico M. Malatesta
Luca Saglietti
224
0
0
23 Jan 2024
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
Yifan Hao
Tong Zhang
AAML
507
5
0
19 Jan 2024
Manipulating Sparse Double Descent
Ya Shi Zhang
165
0
0
19 Jan 2024
Deep Learning With DAGs
Social Science Research Network (SSRN), 2024
Sourabh Vivek Balgi
Adel Daoud
Jose M. Pena
G. Wodtke
Jesse Zhou
AI4CE
CML
254
5
0
12 Jan 2024
Empirical Analysis of Efficient Fine-Tuning Methods for Large Pre-Trained Language Models
Nigel Doering
Cyril Gorlla
Trevor Tuttle
Adhvaith Vijay
80
2
0
08 Jan 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
212
0
0
08 Jan 2024
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai
Ohad Shamir
377
22
0
26 Dec 2023
TPTNet: A Data-Driven Temperature Prediction Model Based on Turbulent Potential Temperature
Jun Park
Changhoon Lee
215
4
0
22 Dec 2023
Predictive variational autoencoder for learning robust representations of time-series data
Julia Huiming Wang
Dexter Tsin
Tatiana Engel
CML
OOD
AI4TS
230
4
0
12 Dec 2023
Artificial Neural Nets and the Representation of Human Concepts
Timo Freiesleben
NAI
341
4
0
08 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
397
5
0
07 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
380
6
0
07 Dec 2023
Understanding the Role of Optimization in Double Descent
Chris Yuhao Liu
Jeffrey Flanigan
201
0
0
06 Dec 2023
Critical Influence of Overparameterization on Sharpness-aware Minimization
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
788
2
0
29 Nov 2023
From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks
Social Science Research Network (SSRN), 2023
Philippe Goulet Coulombe
Mikael Frenette
Karin Klieber
200
4
0
27 Nov 2023
Applying statistical learning theory to deep learning
Journal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech.), 2023
Cédric Gerbelot
Avetik G. Karagulyan
Stefani Karp
Kavya Ravichandran
Menachem Stern
Nathan Srebro
FedML
247
3
0
26 Nov 2023
More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory
James B. Simon
Dhruva Karkada
Nikhil Ghosh
Mikhail Belkin
AI4CE
BDL
455
22
0
24 Nov 2023
Previous
1
2
3
4
5
6
...
17
18
19
Next