Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.06015
Cited By
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
16 February 2019
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit"
50 / 72 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
106
0
0
06 May 2025
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
61
1
0
04 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
77
0
0
28 Jan 2025
Geometry and Optimization of Shallow Polynomial Networks
Yossi Arjevani
Joan Bruna
Joe Kileel
Elzbieta Polak
Matthew Trager
34
1
0
10 Jan 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
59
1
0
10 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
54
12
0
26 Sep 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
38
2
0
30 May 2024
Infinite Limits of Multi-head Transformer Dynamics
Blake Bordelon
Hamza Tahir Chaudhry
C. Pehlevan
AI4CE
42
9
0
24 May 2024
High dimensional analysis reveals conservative sharpening and a stochastic edge of stability
Atish Agarwala
Jeffrey Pennington
41
3
0
30 Apr 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis D. Haupt
ODL
44
3
0
12 Mar 2024
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
34
4
0
26 Dec 2023
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Edgar Dobriban
MLT
34
19
0
11 Oct 2023
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
32
18
0
07 Sep 2023
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
29
1
0
10 Jul 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
27
3
0
26 May 2023
Understanding the Initial Condensation of Convolutional Neural Networks
Zhangchen Zhou
Hanxu Zhou
Yuqing Li
Zhi-Qin John Xu
MLT
AI4CE
23
5
0
17 May 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
Reproducing kernel Hilbert spaces in the mean field limit
Christian Fiedler
Michael Herty
M. Rom
C. Segala
Sebastian Trimpe
19
6
0
28 Feb 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
36
33
0
28 Feb 2023
From high-dimensional & mean-field dynamics to dimensionless ODEs: A unifying approach to SGD in two-layers networks
Luca Arnaboldi
Ludovic Stephan
Florent Krzakala
Bruno Loureiro
MLT
30
31
0
12 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
62
2
0
02 Feb 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
34
60
0
26 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
45
11
0
30 Dec 2022
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
36
36
0
14 Dec 2022
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
Kangyu Weng
Aohua Cheng
Ziyang Zhang
Pei Sun
Yang Tian
48
2
0
04 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
20
5
0
20 Oct 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width
Hanxu Zhou
Qixuan Zhou
Zhenyuan Jin
Tao Luo
Yaoyu Zhang
Zhi-Qin John Xu
22
20
0
24 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Rentian Yao
Xiaohui Chen
Yun Yang
43
9
0
16 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
31
20
0
14 May 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
10
31
0
01 Feb 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
59
64
0
25 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
22
11
0
18 Jan 2022
DNN gradient lossless compression: Can GenNorm be the answer?
Zhongzhu Chen
Eduin E. Hernandez
Yu-Chih Huang
Stefano Rini
17
9
0
15 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
36
13
0
03 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
24
32
0
02 Nov 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya-Qin Zhang
19
16
0
23 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
79
10
0
13 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
42
6
0
12 Oct 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
31
74
0
28 Jun 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
17
25
0
25 Jun 2021
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
Mufan Bill Li
Mihai Nica
Daniel M. Roy
23
33
0
07 Jun 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
41
19
0
11 May 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
24
20
0
21 Mar 2021
1
2
Next