ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09457
  4. Cited By
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods

Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods

21 October 2019
Eyke Hüllermeier
Willem Waegeman
    PER
    UD
ArXivPDFHTML

Papers citing "Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods"

50 / 550 papers shown
Title
Calibrated Uncertainty for Molecular Property Prediction using Ensembles
  of Message Passing Neural Networks
Calibrated Uncertainty for Molecular Property Prediction using Ensembles of Message Passing Neural Networks
Jonas Busk
Peter Bjørn Jørgensen
Arghya Bhowmik
Mikkel N. Schmidt
Ole Winther
T. Vegge
20
49
0
13 Jul 2021
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
  Detectors
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
Hanno Gottschalk
BDL
UQCV
14
12
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
35
1,109
0
07 Jul 2021
Machine Learning for Fraud Detection in E-Commerce: A Research Agenda
Machine Learning for Fraud Detection in E-Commerce: A Research Agenda
Niek Tax
Kees Jan de Vries
Mathijs de Jong
Nikoleta Dosoula
Bram van den Akker
Jon Smith
Olivier Thuong
Lucas Bernardi
6
19
0
05 Jul 2021
A Comparison of the Delta Method and the Bootstrap in Deep Learning
  Classification
A Comparison of the Delta Method and the Bootstrap in Deep Learning Classification
G. K. Nilsen
A. Munthe-Kaas
H. Skaug
M. Brun
23
0
0
04 Jul 2021
Scene Uncertainty and the Wellington Posterior of Deterministic Image
  Classifiers
Scene Uncertainty and the Wellington Posterior of Deterministic Image Classifiers
Stephanie Tsuei
Aditya Golatkar
Stefano Soatto
UQCV
21
0
0
25 Jun 2021
FF-NSL: Feed-Forward Neural-Symbolic Learner
FF-NSL: Feed-Forward Neural-Symbolic Learner
Daniel Cunnington
Mark Law
A. Russo
Jorge Lobo
NAI
34
15
0
24 Jun 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
Neural network interpretability for forecasting of aggregated renewable
  generation
Neural network interpretability for forecasting of aggregated renewable generation
Y. Lu
Ilgiz Murzakhanov
Spyros Chatzivasileiadis
14
10
0
19 Jun 2021
Targeted Active Learning for Bayesian Decision-Making
Targeted Active Learning for Bayesian Decision-Making
Louis Filstroff
Iiris Sundin
P. Mikkola
A. Tiulpin
Juuso Kylmäoja
Samuel Kaski
19
4
0
08 Jun 2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
CML
4
18
0
07 Jun 2021
How to Evaluate Uncertainty Estimates in Machine Learning for
  Regression?
How to Evaluate Uncertainty Estimates in Machine Learning for Regression?
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
23
21
0
07 Jun 2021
Deep Ensembles from a Bayesian Perspective
Deep Ensembles from a Bayesian Perspective
L. Hoffmann
Clemens Elster
UD
BDL
UQCV
4
35
0
27 May 2021
Bridging the Gap Between Explainable AI and Uncertainty Quantification
  to Enhance Trustability
Bridging the Gap Between Explainable AI and Uncertainty Quantification to Enhance Trustability
Dominik Seuss
17
15
0
25 May 2021
Ensemble Quantile Networks: Uncertainty-Aware Reinforcement Learning
  with Applications in Autonomous Driving
Ensemble Quantile Networks: Uncertainty-Aware Reinforcement Learning with Applications in Autonomous Driving
C. Hoel
Krister Wolff
L. Laine
UQCV
EDL
23
38
0
21 May 2021
Aleatoric uncertainty for Errors-in-Variables models in deep regression
Aleatoric uncertainty for Errors-in-Variables models in deep regression
J. Martin
Clemens Elster
UQCV
UD
BDL
17
8
0
19 May 2021
Accounting for Model Uncertainty in Algorithmic Discrimination
Accounting for Model Uncertainty in Algorithmic Discrimination
Junaid Ali
Adish Singla
Krishna P. Gummadi
FaML
17
21
0
10 May 2021
Safe Chance Constrained Reinforcement Learning for Batch Process Control
Safe Chance Constrained Reinforcement Learning for Batch Process Control
M. Mowbray
Panagiotis Petsagkourakis
Ehecatl Antonio del Rio Chanona
Dongda Zhang
OffRL
29
34
0
23 Apr 2021
I Find Your Lack of Uncertainty in Computer Vision Disturbing
I Find Your Lack of Uncertainty in Computer Vision Disturbing
Matias Valdenegro-Toro
UQCV
22
20
0
16 Apr 2021
Bayesian Variational Federated Learning and Unlearning in Decentralized
  Networks
Bayesian Variational Federated Learning and Unlearning in Decentralized Networks
J. Gong
Osvaldo Simeone
Joonhyuk Kang
FedML
MU
21
12
0
08 Apr 2021
A Comparative Analysis of Machine Learning and Grey Models
A Comparative Analysis of Machine Learning and Grey Models
Gang He
Khwaja Mutahir Ahmad
Wenxin Yu
Xiaochuan Xu
J. Kumar
SyDa
AI4TS
15
0
0
02 Apr 2021
Active Learning for Deep Object Detection via Probabilistic Modeling
Active Learning for Deep Object Detection via Probabilistic Modeling
Jiwoong Choi
Ismail Elezi
Hyuk-Jae Lee
C. Farabet
J. Álvarez
17
121
0
30 Mar 2021
Machine learning based digital twin for stochastic nonlinear
  multi-degree of freedom dynamical system
Machine learning based digital twin for stochastic nonlinear multi-degree of freedom dynamical system
Shailesh Garg
Ankush Gogoi
S. Chakraborty
B. Hazra
AI4CE
20
15
0
29 Mar 2021
Randomization-based Machine Learning in Renewable Energy Prediction
  Problems: Critical Literature Review, New Results and Perspectives
Randomization-based Machine Learning in Renewable Energy Prediction Problems: Critical Literature Review, New Results and Perspectives
Javier Del Ser
D. Casillas-Pérez
L. Cornejo-Bueno
Luis Prieto-Godino
J. Sanz-Justo
C. Casanova-Mateo
S. Salcedo-Sanz
AI4CE
34
42
0
26 Mar 2021
Efficient Deep Reinforcement Learning with Imitative Expert Priors for
  Autonomous Driving
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autonomous Driving
Zhiyu Huang
Jingda Wu
Chen Lv
19
132
0
19 Mar 2021
Uncertainty Quantification by Ensemble Learning for Computational
  Optical Form Measurements
Uncertainty Quantification by Ensemble Learning for Computational Optical Form Measurements
L. Hoffmann
I. Fortmeier
Clemens Elster
UQCV
19
28
0
01 Mar 2021
Assigning Confidence to Molecular Property Prediction
Assigning Confidence to Molecular Property Prediction
AkshatKumar Nigam
R. Pollice
Matthew F. D. Hurley
Riley J. Hickman
Matteo Aldeghi
Naruki Yoshikawa
Seyone Chithrananda
Vincent A. Voelz
Alán Aspuru-Guzik
AI4CE
14
46
0
23 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
How to Stay Curious while Avoiding Noisy TVs using Aleatoric Uncertainty
  Estimation
How to Stay Curious while Avoiding Noisy TVs using Aleatoric Uncertainty Estimation
Augustine N. Mavor-Parker
K. Young
Caswell Barry
Lewis D. Griffin
21
17
0
08 Feb 2021
Exploiting epistemic uncertainty of the deep learning models to generate
  adversarial samples
Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples
Ömer Faruk Tuna
Ferhat Ozgur Catak
M. T. Eskil
AAML
6
32
0
08 Feb 2021
Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study
Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study
B. Grimstad
M. Hotvedt
Anders T. Sandnes
O. Kolbjørnsen
Lars Imsland
19
21
0
02 Feb 2021
Learning active learning at the crossroads? evaluation and discussion
Learning active learning at the crossroads? evaluation and discussion
L. Desreumaux
V. Lemaire
14
9
0
16 Dec 2020
From Weakly Supervised Learning to Biquality Learning: an Introduction
From Weakly Supervised Learning to Biquality Learning: an Introduction
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
A. Ouorou
6
21
0
16 Dec 2020
Closeness and Uncertainty Aware Adversarial Examples Detection in
  Adversarial Machine Learning
Closeness and Uncertainty Aware Adversarial Examples Detection in Adversarial Machine Learning
Ömer Faruk Tuna
Ferhat Ozgur Catak
M. T. Eskil
AAML
10
11
0
11 Dec 2020
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
  using Deep Learning
DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts using Deep Learning
Dimitrios Tanoglidis
A. Ćiprijanović
A. Drlica-Wagner
18
15
0
24 Nov 2020
Uncertainty Estimation and Calibration with Finite-State Probabilistic
  RNNs
Uncertainty Estimation and Calibration with Finite-State Probabilistic RNNs
Cheng Wang
Carolin (Haas) Lawrence
Mathias Niepert
UQCV
29
10
0
24 Nov 2020
A General Framework for Distributed Inference with Uncertain Models
A General Framework for Distributed Inference with Uncertain Models
James Z. Hare
César A. Uribe
Lance M. Kaplan
Ali Jadbabaie
FedML
8
8
0
20 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
51
1,877
0
12 Nov 2020
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD
  Detection On Medical Tabular Data
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data
Dennis Ulmer
L. Meijerink
Giovanni Cina
OOD
8
64
0
06 Nov 2020
Deep Conditional Transformation Models
Deep Conditional Transformation Models
Philipp F. M. Baumann
Torsten Hothorn
David Rügamer
6
27
0
15 Oct 2020
Prediction intervals for Deep Neural Networks
Prediction intervals for Deep Neural Networks
Tullio Mancini
Hector F. Calvo-Pardo
Jose Olmo
UQCV
OOD
23
4
0
08 Oct 2020
SOAR: Simultaneous Or of And Rules for Classification of Positive &
  Negative Classes
SOAR: Simultaneous Or of And Rules for Classification of Positive & Negative Classes
Elena Khusainova
Emily Dodwell
Ritwik Mitra
14
2
0
25 Aug 2020
Active learning of deep surrogates for PDEs: Application to metasurface
  design
Active learning of deep surrogates for PDEs: Application to metasurface design
R. Pestourie
Youssef Mroueh
Thanh V. Nguyen
Payel Das
Steven G. Johnson
AI4CE
12
72
0
24 Aug 2020
Using Subjective Logic to Estimate Uncertainty in Multi-Armed Bandit
  Problems
Using Subjective Logic to Estimate Uncertainty in Multi-Armed Bandit Problems
Fabio Massimo Zennaro
A. Jøsang
14
4
0
17 Aug 2020
Deep Bayesian Gaussian Processes for Uncertainty Estimation in
  Electronic Health Records
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDL
UQCV
11
35
0
23 Mar 2020
Bayesian Neural Networks With Maximum Mean Discrepancy Regularization
Bayesian Neural Networks With Maximum Mean Discrepancy Regularization
Jary Pomponi
Simone Scardapane
A. Uncini
UQCV
BDL
6
18
0
02 Mar 2020
Semi-Structured Distributional Regression -- Extending Structured
  Additive Models by Arbitrary Deep Neural Networks and Data Modalities
Semi-Structured Distributional Regression -- Extending Structured Additive Models by Arbitrary Deep Neural Networks and Data Modalities
David Rügamer
Chris Kolb
Nadja Klein
10
22
0
13 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Unifying Practical Uncertainty Representations: I. Generalized P-Boxes
Unifying Practical Uncertainty Representations: I. Generalized P-Boxes
Sebastien Destercke
D. Dubois
E. Chojnacki
76
126
0
20 Aug 2008
Previous
123...10119