ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09457
  4. Cited By
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods

Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods

21 October 2019
Eyke Hüllermeier
Willem Waegeman
    PER
    UD
ArXivPDFHTML

Papers citing "Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods"

50 / 550 papers shown
Title
Correcting Annotator Bias in Training Data: Population-Aligned Instance Replication (PAIR)
Correcting Annotator Bias in Training Data: Population-Aligned Instance Replication (PAIR)
Stephanie Eckman
Bolei Ma
Christoph Kern
Rob Chew
Barbara Plank
Frauke Kreuter
41
0
0
12 Jan 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
33
0
0
10 Jan 2025
AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
Fuhang Liang
Rucong Xu
Deng Lin
OOD
33
0
0
10 Jan 2025
Predictable Artificial Intelligence
Predictable Artificial Intelligence
Lexin Zhou
Pablo Antonio Moreno Casares
Fernando Martínez-Plumed
John Burden
Ryan Burnell
...
Seán Ó hÉigeartaigh
Danaja Rutar
Wout Schellaert
Konstantinos Voudouris
José Hernández Orallo
51
2
0
08 Jan 2025
Partial-Label Learning with a Reject Option
Partial-Label Learning with a Reject Option
Tobias Fuchs
Florian Kalinke
Klemens Bohm
40
0
0
08 Jan 2025
Uncertainty separation via ensemble quantile regression
Uncertainty separation via ensemble quantile regression
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
UD
UQCV
74
0
0
18 Dec 2024
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
D. Wolf
Alexander Braun
Markus Ulrich
89
0
0
18 Dec 2024
Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness
  and Challenges
Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges
Martin Aubard
Ana Madureira
Luis F. Teixeira
José Pinto
AAML
73
2
0
16 Dec 2024
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Haochen Shi
Yibin Wang
Ligong Han
H. M. Zhang
Hao Wang
UQCV
83
0
0
07 Dec 2024
Towards Understanding and Quantifying Uncertainty for Text-to-Image
  Generation
Towards Understanding and Quantifying Uncertainty for Text-to-Image Generation
Gianni Franchi
Dat Nguyen Trong
Nacim Belkhir
Guoxuan Xia
Andrea Pilzer
UQLM
78
0
0
04 Dec 2024
Divergent Ensemble Networks: Enhancing Uncertainty Estimation with
  Shared Representations and Independent Branching
Divergent Ensemble Networks: Enhancing Uncertainty Estimation with Shared Representations and Independent Branching
Arnav Kharbanda
Advait Chandorkar
UQCV
67
0
0
02 Dec 2024
Context-Based Echo State Networks with Prediction Confidence for
  Human-Robot Shared Control
Context-Based Echo State Networks with Prediction Confidence for Human-Robot Shared Control
Negin Amirshirzad
Mehmet Arda Eren
Erhan Oztop
62
0
0
30 Nov 2024
Uni-SLAM: Uncertainty-Aware Neural Implicit SLAM for Real-Time Dense
  Indoor Scene Reconstruction
Uni-SLAM: Uncertainty-Aware Neural Implicit SLAM for Real-Time Dense Indoor Scene Reconstruction
Shaoxiang Wang
Yaxu Xie
Chun-Peng Chang
Christen Millerdurai
A. Pagani
Didier Stricker
67
1
0
29 Nov 2024
Exploring Aleatoric Uncertainty in Object Detection via Vision
  Foundation Models
Exploring Aleatoric Uncertainty in Object Detection via Vision Foundation Models
Peng Cui
Guande He
Dan Zhang
Zhijie Deng
Yinpeng Dong
Jun Zhu
82
0
0
26 Nov 2024
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Fine-Grained Uncertainty Quantification via Collisions
Fine-Grained Uncertainty Quantification via Collisions
Jesse Friedbaum
S. Adiga
Ravi Tandon
69
0
0
18 Nov 2024
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Michele Caprio
David Stutz
Shuo Li
Arnaud Doucet
UQCV
64
4
0
07 Nov 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
54
2
0
05 Nov 2024
Uncertainty measurement for complex event prediction in safety-critical
  systems
Uncertainty measurement for complex event prediction in safety-critical systems
Maria J. P. Peixoto
Akramul Azim
26
0
0
02 Nov 2024
State- and context-dependent robotic manipulation and grasping via
  uncertainty-aware imitation learning
State- and context-dependent robotic manipulation and grasping via uncertainty-aware imitation learning
Tim R. Winter
Ashok M. Sundaram
W. Friedl
Máximo A. Roa
F. Stulp
João Silvério
31
0
0
31 Oct 2024
On the Robustness of Adversarial Training Against Uncertainty Attacks
On the Robustness of Adversarial Training Against Uncertainty Attacks
Emanuele Ledda
Giovanni Scodeller
Daniele Angioni
Giorgio Piras
Antonio Emanuele Cinà
Giorgio Fumera
Battista Biggio
Fabio Roli
AAML
30
1
0
29 Oct 2024
Fast Calibrated Explanations: Efficient and Uncertainty-Aware
  Explanations for Machine Learning Models
Fast Calibrated Explanations: Efficient and Uncertainty-Aware Explanations for Machine Learning Models
Tuwe Löfström
Fatima Rabia Yapicioglu
Alessandra Stramiglio
Helena Lofstrom
Fabio Vitali
FAtt
LRM
44
0
0
28 Oct 2024
Rethinking the Uncertainty: A Critical Review and Analysis in the Era of
  Large Language Models
Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models
Mohammad Beigi
Sijia Wang
Ying Shen
Zihao Lin
Adithya Kulkarni
...
Ming Jin
Jin-Hee Cho
Dawei Zhou
Chang-Tien Lu
Lifu Huang
29
1
0
26 Oct 2024
Can Uncertainty Quantification Enable Better Learning-based Index
  Tuning?
Can Uncertainty Quantification Enable Better Learning-based Index Tuning?
Tao Yu
Zhaonian Zou
Hao Xiong
16
1
0
23 Oct 2024
Mislabeled examples detection viewed as probing machine learning models:
  concepts, survey and extensive benchmark
Mislabeled examples detection viewed as probing machine learning models: concepts, survey and extensive benchmark
Thomas George
Pierre Nodet
A. Bondu
Vincent Lemaire
VLM
32
0
0
21 Oct 2024
A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice
A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice
Hsiu-Yuan Huang
Yutong Yang
Zhaoxi Zhang
Sanwoo Lee
Yunfang Wu
36
9
0
20 Oct 2024
Accounting for Sycophancy in Language Model Uncertainty Estimation
Accounting for Sycophancy in Language Model Uncertainty Estimation
Anthony Sicilia
Mert Inan
Malihe Alikhani
24
1
0
17 Oct 2024
Principled Bayesian Optimisation in Collaboration with Human Experts
Principled Bayesian Optimisation in Collaboration with Human Experts
Wenjie Xu
Masaki Adachi
Colin N. Jones
Michael A. Osborne
33
2
0
14 Oct 2024
Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization
Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization
Johan Hatleskog
Kostas Alexis
3DPC
44
2
0
14 Oct 2024
Uncertainty Estimation and Out-of-Distribution Detection for LiDAR Scene
  Semantic Segmentation
Uncertainty Estimation and Out-of-Distribution Detection for LiDAR Scene Semantic Segmentation
Hanieh Shojaei
Qianqian Zou
Max Mehltretter
UQCV
16
0
0
11 Oct 2024
Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble
  Deep Kernel Learning Model
Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model
Yonghang Zhou
Hongyi Zhu
Yidong Chai
Yuanchun Jiang
Yezheng Liu
AAML
24
0
0
10 Oct 2024
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Ruijia Niu
D. Wu
Rose Yu
Yi-An Ma
33
1
0
09 Oct 2024
Uncertainty estimation via ensembles of deep learning models and dropout
  layers for seismic traces
Uncertainty estimation via ensembles of deep learning models and dropout layers for seismic traces
Giovanni Messuti
ortensia Amoroso
Ferdinando Napolitano
Mariarosaria Falanga
Paolo Capuano
Silvia Scarpetta
UQCV
18
0
0
08 Oct 2024
Active Evaluation Acquisition for Efficient LLM Benchmarking
Active Evaluation Acquisition for Efficient LLM Benchmarking
Yang Li
Jie Ma
Miguel Ballesteros
Yassine Benajiba
Graham Horwood
ELM
29
1
0
08 Oct 2024
Ensured: Explanations for Decreasing the Epistemic Uncertainty in
  Predictions
Ensured: Explanations for Decreasing the Epistemic Uncertainty in Predictions
Helena Lofstrom
Tuwe Löfström
Johan Hallberg Szabadvary
33
0
0
07 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic
  Fairness
FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness
Lucas Rosenblatt
R. T. Witter
FaML
22
0
0
02 Oct 2024
Response Estimation and System Identification of Dynamical Systems via
  Physics-Informed Neural Networks
Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks
M. Haywood-Alexander
Giacamo Arcieri
A. Kamariotis
Eleni Chatzi
34
1
0
02 Oct 2024
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Xingzhou Lou
Dong Yan
Wei Shen
Yuzi Yan
Jian Xie
Junge Zhang
45
22
0
01 Oct 2024
Bridging the Gap in Hybrid Decision-Making Systems
Bridging the Gap in Hybrid Decision-Making Systems
Federico Mazzoni
Roberto Pellungrini
Riccardo Guidotti
31
0
0
28 Sep 2024
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty
  Learning
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning
Song Wang
Zhongdao Wang
Jiawei Yu
Wentong Li
Bailan Feng
Junbo Chen
Jianke Zhu
UQCV
34
3
0
26 Sep 2024
Scalable Ensemble Diversification for OOD Generalization and Detection
Scalable Ensemble Diversification for OOD Generalization and Detection
Alexander Rubinstein
Luca Scimeca
Damien Teney
Seong Joon Oh
BDL
OOD
355
1
0
25 Sep 2024
An Efficient Model-Agnostic Approach for Uncertainty Estimation in
  Data-Restricted Pedometric Applications
An Efficient Model-Agnostic Approach for Uncertainty Estimation in Data-Restricted Pedometric Applications
Viacheslav Barkov
Jonas Schmidinger
Robin Gebbers
Martin Atzmueller
28
1
0
18 Sep 2024
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
43
0
0
17 Sep 2024
Quantile Regression for Distributional Reward Models in RLHF
Quantile Regression for Distributional Reward Models in RLHF
Nicolai Dorka
32
16
0
16 Sep 2024
Confidence Estimation for LLM-Based Dialogue State Tracking
Confidence Estimation for LLM-Based Dialogue State Tracking
Yi-Jyun Sun
Suvodip Dey
Dilek Z. Hakkani-Tür
Gökhan Tür
48
1
0
15 Sep 2024
Uncertainty and Generalizability in Foundation Models for Earth
  Observation
Uncertainty and Generalizability in Foundation Models for Earth Observation
Raúl Ramos-Pollán
F. Kalaitzis
Karthick Panner Selvam
34
0
0
13 Sep 2024
DEMAU: Decompose, Explore, Model and Analyse Uncertainties
DEMAU: Decompose, Explore, Model and Analyse Uncertainties
A. Hoarau
Vincent Lemaire
UQCV
UD
PER
31
0
0
12 Sep 2024
Empowering Bayesian Neural Networks with Functional Priors through
  Anchored Ensembling for Mechanics Surrogate Modeling Applications
Empowering Bayesian Neural Networks with Functional Priors through Anchored Ensembling for Mechanics Surrogate Modeling Applications
Javad Ghorbanian
Nicholas Casaprima
Audrey Olivier
28
0
0
08 Sep 2024
Enhancing Uncertainty Quantification in Drug Discovery with Censored
  Regression Labels
Enhancing Uncertainty Quantification in Drug Discovery with Censored Regression Labels
Emma Svensson
Hannah Rosa Friesacher
S. Winiwarter
Lewis H. Mervin
Adam Arany
O. Engkvist
42
2
0
06 Sep 2024
Previous
12345...91011
Next