ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2005
  4. Cited By
Scalable Variational Gaussian Process Classification

Scalable Variational Gaussian Process Classification

7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scalable Variational Gaussian Process Classification"

50 / 337 papers shown
Title
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDLUQCV
90
30
0
14 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice
  for Scalable Gaussian Processes
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
74
12
0
12 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel
  Decomposition
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
  Random Features
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features
Thomas M. McDonald
Mauricio A. Alvarez
85
10
0
10 Jun 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural
  Processes on Time Series Data
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDLAI4TS
71
3
0
09 Jun 2021
Multi-output Gaussian Processes for Uncertainty-aware Recommender
  Systems
Multi-output Gaussian Processes for Uncertainty-aware Recommender Systems
Yinchong Yang
Florian Buettner
BDL
30
6
0
08 Jun 2021
Connections and Equivalences between the Nyström Method and Sparse
  Variational Gaussian Processes
Connections and Equivalences between the Nyström Method and Sparse Variational Gaussian Processes
Veit Wild
Motonobu Kanagawa
Dino Sejdinovic
81
16
0
02 Jun 2021
Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
  Kernel Learning
Quantifying Predictive Uncertainty in Medical Image Analysis with Deep Kernel Learning
Zhiliang Wu
Yinchong Yang
Jindong Gu
Volker Tresp
UQCVMedIm
48
9
0
01 Jun 2021
Gaussian Processes with Differential Privacy
Gaussian Processes with Differential Privacy
Antti Honkela
Laila Melkas
61
2
0
01 Jun 2021
Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data
Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data
Shixiang Zhu
Alexander W. Bukharin
Liyan Xie
Khurram Yamin
Shihao Yang
P. Keskinocak
Yao Xie
37
8
0
31 May 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
60
6
0
24 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDLUQCV
103
31
0
10 May 2021
Mixtures of Gaussian Processes for regression under multiple prior
  distributions
Mixtures of Gaussian Processes for regression under multiple prior distributions
Sarem Seitz
10
1
0
19 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
86
23
0
12 Apr 2021
Uncertainty-aware Remaining Useful Life predictor
Uncertainty-aware Remaining Useful Life predictor
Luca Biggio
Alexander Wieland
M. A. Chao
I. Kastanis
Olga Fink
AI4CE
27
7
0
08 Apr 2021
Dense Incremental Metric-Semantic Mapping for Multi-Agent Systems via
  Sparse Gaussian Process Regression
Dense Incremental Metric-Semantic Mapping for Multi-Agent Systems via Sparse Gaussian Process Regression
Ehsan Zobeidi
Alec Koppel
Nikolay Atanasov
61
13
0
30 Mar 2021
Sparse Algorithms for Markovian Gaussian Processes
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
52
12
0
19 Mar 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
102
30
0
18 Mar 2021
Generative Particle Variational Inference via Estimation of Functional
  Gradients
Generative Particle Variational Inference via Estimation of Functional Gradients
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
BDLDRL
114
0
0
01 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
On Feature Collapse and Deep Kernel Learning for Single Forward Pass
  Uncertainty
On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty
Joost R. van Amersfoort
Lewis Smith
Andrew Jesson
Oscar Key
Y. Gal
UQCV
79
104
0
22 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
74
19
0
16 Feb 2021
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning
Idan Achituve
Aviv Navon
Yochai Yemini
Gal Chechik
Ethan Fetaya
GP
61
34
0
15 Feb 2021
Healing Products of Gaussian Processes
Healing Products of Gaussian Processes
Samuel N. Cohen
R. Mbuvha
T. Marwala
M. Deisenroth
GP
43
0
0
14 Feb 2021
Variational Bayes survival analysis for unemployment modelling
Variational Bayes survival analysis for unemployment modelling
P. Boškoski
M. Perne
M. Ramesa
Biljana Mileva-Boshkoska
CML
67
10
0
03 Feb 2021
Evaluating uncertainties in electrochemical impedance spectra of solid
  oxide fuel cells
Evaluating uncertainties in electrochemical impedance spectra of solid oxide fuel cells
Luka Žnidarič
G. Nusev
B. Morel
J. Mougin
D. Juricic
P. Boškoski
40
9
0
20 Jan 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems
  using Deep Neural Networks
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
Babak Shahbaba
UQCVBDL
84
16
0
11 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
127
51
0
27 Dec 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware
  Learning
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
87
18
0
25 Nov 2020
Probabilistic modeling of discrete structural response with application
  to composite plate penetration models
Probabilistic modeling of discrete structural response with application to composite plate penetration models
Anindya Bhaduri
C. Meyer
J. Gillespie
B. Haque
Michael D. Shields
L. Graham‐Brady
44
9
0
23 Nov 2020
A Tunnel Gaussian Process Model for Learning Interpretable Flight's
  Landing Parameters
A Tunnel Gaussian Process Model for Learning Interpretable Flight's Landing Parameters
Sim Kuan Goh
N. P. Singh
Zhi Jun Lim
Sameer Alam
24
9
0
18 Nov 2020
Sparse within Sparse Gaussian Processes using Neighbor Information
Sparse within Sparse Gaussian Processes using Neighbor Information
Gia-Lac Tran
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
43
16
0
10 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
102
61
0
08 Nov 2020
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression
  Models Estimate Posterior Predictive Correlations?
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
UQCV
61
25
0
06 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
103
34
0
03 Nov 2020
DRF: A Framework for High-Accuracy Autonomous Driving Vehicle Modeling
DRF: A Framework for High-Accuracy Autonomous Driving Vehicle Modeling
Shu Jiang
Yu Wang
Longtao Lin
Weiman Lin
Yu Cao
Jinghao Miao
Qi Luo
28
2
0
01 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep
  Gaussian Processes
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
18
3
0
01 Nov 2020
Inter-domain Deep Gaussian Processes
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
79
11
0
01 Nov 2020
Ranking Creative Language Characteristics in Small Data Scenarios
Ranking Creative Language Characteristics in Small Data Scenarios
Julia Siekiera
M. Koppel
Edwin Simpson
Kevin Stowe
Iryna Gurevych
Stefan Kramer
BDL
13
3
0
23 Oct 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
102
7
0
20 Oct 2020
Stationary Activations for Uncertainty Calibration in Deep Learning
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
Christabella Irwanto
Arno Solin
UQCVBDL
54
19
0
19 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
23
13
0
19 Oct 2020
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic
  Models
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic Models
E. Zelikman
Sharon Zhou
Jeremy Irvin
Cooper D. Raterink
Hao Sheng
Anand Avati
Jack Kelly
Ram Rajagopal
A. Ng
D. Gagne
63
12
0
09 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
A. Tompkins
Rafael Oliveira
F. Ramos
60
6
0
09 Oct 2020
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their
  Asymptotic Overconfidence
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
63
9
0
06 Oct 2020
Recyclable Gaussian Processes
Recyclable Gaussian Processes
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
BDL
39
1
0
06 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDLMedIm
77
9
0
16 Sep 2020
Generalized Multi-Output Gaussian Process Censored Regression
Generalized Multi-Output Gaussian Process Censored Regression
Daniele Gammelli
Kasper Pryds Rolsted
Dario Pacino
Filipe Rodrigues
43
14
0
10 Sep 2020
Information Theoretic Meta Learning with Gaussian Processes
Information Theoretic Meta Learning with Gaussian Processes
Michalis K. Titsias
Francisco J. R. Ruiz
Sotirios Nikoloutsopoulos
Alexandre Galashov
FedML
99
15
0
07 Sep 2020
Doubly Stochastic Variational Inference for Neural Processes with
  Hierarchical Latent Variables
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
66
42
0
21 Aug 2020
Previous
1234567
Next