ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2005
  4. Cited By
Scalable Variational Gaussian Process Classification

Scalable Variational Gaussian Process Classification

7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scalable Variational Gaussian Process Classification"

50 / 337 papers shown
Title
Learning Multiscale Non-stationary Causal Structures
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CMLAI4TS
56
4
0
31 Aug 2022
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
31
0
0
24 Aug 2022
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Max Lamparth
Ludwig M. Böss
U. Steinwandel
K. Dolag
15
0
0
14 Aug 2022
Learning inducing points and uncertainty on molecular data by scalable
  variational Gaussian processes
Learning inducing points and uncertainty on molecular data by scalable variational Gaussian processes
Mikhail Tsitsvero
Mingoo Jin
Andrey Lyalin
25
0
0
16 Jul 2022
Volatility Based Kernels and Moving Average Means for Accurate
  Forecasting with Gaussian Processes
Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes
Gregory W. Benton
Wesley J. Maddox
A. Wilson
AI4TS
38
3
0
13 Jul 2022
Markovian Gaussian Process Variational Autoencoders
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDLAI4TS
108
17
0
12 Jul 2022
Parametric and Multivariate Uncertainty Calibration for Regression and
  Object Detection
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
83
8
0
04 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
95
0
0
27 Jun 2022
Additive Gaussian Processes Revisited
Additive Gaussian Processes Revisited
Xiaoyu Lu
A. Boukouvalas
J. Hensman
46
23
0
20 Jun 2022
Scalable Deep Gaussian Markov Random Fields for General Graphs
Scalable Deep Gaussian Markov Random Fields for General Graphs
Joel Oskarsson
Per Sidén
Fredrik Lindsten
BDL
34
4
0
10 Jun 2022
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian
  Optimization
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization
Gilhyun Ryou
E. Tal
S. Karaman
59
4
0
01 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
71
6
0
30 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
55
3
0
22 May 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
91
24
0
20 May 2022
Scalable Stochastic Parametric Verification with Stochastic Variational
  Smoothed Model Checking
Scalable Stochastic Parametric Verification with Stochastic Variational Smoothed Model Checking
Luca Bortolussi
Francesca Cairoli
Ginevra Carbone
Paolo Pulcini
89
1
0
11 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed
  Torque Control
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
41
3
0
10 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
228
51
0
01 May 2022
A Gaussian Process Model for Opponent Prediction in Autonomous Racing
A Gaussian Process Model for Opponent Prediction in Autonomous Racing
Edward L. Zhu
F. L. Busch
Jake Johnson
Francesco Borrelli
59
18
0
26 Apr 2022
A piece-wise constant approximation for non-conjugate Gaussian Process
  models
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
19
0
0
22 Apr 2022
Gaussian Processes for Missing Value Imputation
Gaussian Processes for Missing Value Imputation
B. Jafrasteh
Daniel Hernández-Lobato
Simón Pedro Lubián López
Isabel Benavente-Fernández
GP
64
16
0
10 Apr 2022
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Zehua Wang
Guogang Liao
Xiaowen Shi
Xiaoxu Wu
Wei Shen
Bingqin Zhu
Yongkang Wang
Xingxing Wang
Dong Wang
36
5
0
02 Apr 2022
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Benjamin Letham
Phillip Guan
Chase Tymms
E. Bakshy
Michael Shvartsman
63
11
0
18 Mar 2022
Web Mining to Inform Locations of Charging Stations for Electric
  Vehicles
Web Mining to Inform Locations of Charging Stations for Electric Vehicles
Philipp Hummler
Christof Naumzik
Stefan Feuerriegel
19
5
0
10 Mar 2022
Data-efficient learning of object-centric grasp preferences
Data-efficient learning of object-centric grasp preferences
Yoann Fleytoux
Anji Ma
S. Ivaldi
Jean-Baptiste Mouret
85
5
0
01 Mar 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
78
3
0
22 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
61
13
0
17 Jan 2022
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer
  Treatment-Effects from Observational Data
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
Andrew Jesson
P. Tigas
Joost R. van Amersfoort
Andreas Kirsch
Uri Shalit
Y. Gal
CML
109
32
0
03 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
72
35
0
02 Nov 2021
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
83
16
0
02 Nov 2021
Scalable Inference in SDEs by Direct Matching of the
  Fokker-Planck-Kolmogorov Equation
Scalable Inference in SDEs by Direct Matching of the Fokker-Planck-Kolmogorov Equation
Arno Solin
Ella Tamir
Prakhar Verma
57
19
0
29 Oct 2021
Conditioning Sparse Variational Gaussian Processes for Online
  Decision-making
Conditioning Sparse Variational Gaussian Processes for Online Decision-making
Wesley J. Maddox
Samuel Stanton
A. Wilson
76
31
0
28 Oct 2021
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
56
3
0
27 Oct 2021
Modular Gaussian Processes for Transfer Learning
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
34
4
0
26 Oct 2021
Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
Felix L. Opolka
Yin-Cong Zhi
Pietro Lio
Xiaowen Dong
46
19
0
25 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDLUQCV
28
4
0
21 Oct 2021
Approximate Latent Force Model Inference
Approximate Latent Force Model Inference
Jacob Moss
Felix L. Opolka
Bianca Dumitrascu
Pietro Lio
125
3
0
24 Sep 2021
Self-explaining variational posterior distributions for Gaussian Process
  models
Self-explaining variational posterior distributions for Gaussian Process models
Sarem Seitz
BDL
24
0
0
08 Sep 2021
Estimation of Bivariate Structural Causal Models by Variational Gaussian
  Process Regression Under Likelihoods Parametrised by Normalising Flows
Estimation of Bivariate Structural Causal Models by Variational Gaussian Process Regression Under Likelihoods Parametrised by Normalising Flows
Nico Reick
Felix Wiewel
Alexander Bartler
B. Yang
CML
22
2
0
06 Sep 2021
Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine
  Learning
Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine Learning
Sudharshan Ashwin Renganathan
R. Maulik
S. Letizia
G. Iungo
AI4CE
33
19
0
06 Sep 2021
Large-Scale Learning with Fourier Features and Tensor Decompositions
Large-Scale Learning with Fourier Features and Tensor Decompositions
Frederiek Wesel
Kim Batselier
41
11
0
03 Sep 2021
Active Assessment of Prediction Services as Accuracy Surface Over
  Attribute Combinations
Active Assessment of Prediction Services as Accuracy Surface Over Attribute Combinations
Vihari Piratla
Soumen Chakrabarty
Sunita Sarawagi
21
3
0
14 Aug 2021
Input Dependent Sparse Gaussian Processes
Input Dependent Sparse Gaussian Processes
B. Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
UQCV
53
5
0
15 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
51
18
0
08 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
95
61
0
01 Jul 2021
Valid prediction intervals for regression problems
Valid prediction intervals for regression problems
Nicolas Dewolf
B. De Baets
Willem Waegeman
159
46
0
01 Jul 2021
Personalized Federated Learning with Gaussian Processes
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
87
103
0
29 Jun 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
56
8
0
18 Jun 2021
Amortized Auto-Tuning: Cost-Efficient Bayesian Transfer Optimization for
  Hyperparameter Recommendation
Amortized Auto-Tuning: Cost-Efficient Bayesian Transfer Optimization for Hyperparameter Recommendation
Yuxin Xiao
Eric P. Xing
Willie Neiswanger
77
5
0
17 Jun 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by
  Adaptive Discretization
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
88
6
0
16 Jun 2021
Previous
1234567
Next