Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.2005
Cited By
Scalable Variational Gaussian Process Classification
7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Scalable Variational Gaussian Process Classification"
50 / 337 papers shown
Title
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
56
4
0
31 Aug 2022
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
31
0
0
24 Aug 2022
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Max Lamparth
Ludwig M. Böss
U. Steinwandel
K. Dolag
15
0
0
14 Aug 2022
Learning inducing points and uncertainty on molecular data by scalable variational Gaussian processes
Mikhail Tsitsvero
Mingoo Jin
Andrey Lyalin
25
0
0
16 Jul 2022
Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes
Gregory W. Benton
Wesley J. Maddox
A. Wilson
AI4TS
38
3
0
13 Jul 2022
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDL
AI4TS
108
17
0
12 Jul 2022
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
83
8
0
04 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
95
0
0
27 Jun 2022
Additive Gaussian Processes Revisited
Xiaoyu Lu
A. Boukouvalas
J. Hensman
46
23
0
20 Jun 2022
Scalable Deep Gaussian Markov Random Fields for General Graphs
Joel Oskarsson
Per Sidén
Fredrik Lindsten
BDL
34
4
0
10 Jun 2022
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization
Gilhyun Ryou
E. Tal
S. Karaman
59
4
0
01 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
71
6
0
30 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
55
3
0
22 May 2022
Bayesian Active Learning with Fully Bayesian Gaussian Processes
Christoffer Riis
Francisco Antunes
F. B. Hüttel
C. L. Azevedo
Francisco Câmara Pereira
GP
91
24
0
20 May 2022
Scalable Stochastic Parametric Verification with Stochastic Variational Smoothed Model Checking
Luca Bortolussi
Francesca Cairoli
Ginevra Carbone
Paolo Pulcini
89
1
0
11 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
41
3
0
10 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
228
51
0
01 May 2022
A Gaussian Process Model for Opponent Prediction in Autonomous Racing
Edward L. Zhu
F. L. Busch
Jake Johnson
Francesco Borrelli
59
18
0
26 Apr 2022
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
19
0
0
22 Apr 2022
Gaussian Processes for Missing Value Imputation
B. Jafrasteh
Daniel Hernández-Lobato
Simón Pedro Lubián López
Isabel Benavente-Fernández
GP
64
16
0
10 Apr 2022
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Zehua Wang
Guogang Liao
Xiaowen Shi
Xiaoxu Wu
Wei Shen
Bingqin Zhu
Yongkang Wang
Xingxing Wang
Dong Wang
36
5
0
02 Apr 2022
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Benjamin Letham
Phillip Guan
Chase Tymms
E. Bakshy
Michael Shvartsman
63
11
0
18 Mar 2022
Web Mining to Inform Locations of Charging Stations for Electric Vehicles
Philipp Hummler
Christof Naumzik
Stefan Feuerriegel
19
5
0
10 Mar 2022
Data-efficient learning of object-centric grasp preferences
Yoann Fleytoux
Anji Ma
S. Ivaldi
Jean-Baptiste Mouret
85
5
0
01 Mar 2022
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
78
3
0
22 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
61
13
0
17 Jan 2022
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
Andrew Jesson
P. Tigas
Joost R. van Amersfoort
Andreas Kirsch
Uri Shalit
Y. Gal
CML
109
32
0
03 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
72
35
0
02 Nov 2021
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
83
16
0
02 Nov 2021
Scalable Inference in SDEs by Direct Matching of the Fokker-Planck-Kolmogorov Equation
Arno Solin
Ella Tamir
Prakhar Verma
57
19
0
29 Oct 2021
Conditioning Sparse Variational Gaussian Processes for Online Decision-making
Wesley J. Maddox
Samuel Stanton
A. Wilson
76
31
0
28 Oct 2021
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
56
3
0
27 Oct 2021
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
34
4
0
26 Oct 2021
Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
Felix L. Opolka
Yin-Cong Zhi
Pietro Lio
Xiaowen Dong
46
19
0
25 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDL
UQCV
28
4
0
21 Oct 2021
Approximate Latent Force Model Inference
Jacob Moss
Felix L. Opolka
Bianca Dumitrascu
Pietro Lio
125
3
0
24 Sep 2021
Self-explaining variational posterior distributions for Gaussian Process models
Sarem Seitz
BDL
24
0
0
08 Sep 2021
Estimation of Bivariate Structural Causal Models by Variational Gaussian Process Regression Under Likelihoods Parametrised by Normalising Flows
Nico Reick
Felix Wiewel
Alexander Bartler
B. Yang
CML
22
2
0
06 Sep 2021
Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine Learning
Sudharshan Ashwin Renganathan
R. Maulik
S. Letizia
G. Iungo
AI4CE
33
19
0
06 Sep 2021
Large-Scale Learning with Fourier Features and Tensor Decompositions
Frederiek Wesel
Kim Batselier
41
11
0
03 Sep 2021
Active Assessment of Prediction Services as Accuracy Surface Over Attribute Combinations
Vihari Piratla
Soumen Chakrabarty
Sunita Sarawagi
21
3
0
14 Aug 2021
Input Dependent Sparse Gaussian Processes
B. Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
UQCV
53
5
0
15 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
51
18
0
08 Jul 2021
On the Practicality of Deterministic Epistemic Uncertainty
Janis Postels
Mattia Segu
Tao Sun
Luca Sieber
Luc Van Gool
Feng Yu
Federico Tombari
UQCV
95
61
0
01 Jul 2021
Valid prediction intervals for regression problems
Nicolas Dewolf
B. De Baets
Willem Waegeman
159
46
0
01 Jul 2021
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
87
103
0
29 Jun 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
56
8
0
18 Jun 2021
Amortized Auto-Tuning: Cost-Efficient Bayesian Transfer Optimization for Hyperparameter Recommendation
Yuxin Xiao
Eric P. Xing
Willie Neiswanger
77
5
0
17 Jun 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
88
6
0
16 Jun 2021
Previous
1
2
3
4
5
6
7
Next