Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.2005
Cited By
Scalable Variational Gaussian Process Classification
7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Scalable Variational Gaussian Process Classification"
50 / 337 papers shown
Title
Improving predictions of Bayesian neural nets via local linearization
Alexander Immer
M. Korzepa
Matthias Bauer
BDL
80
11
0
19 Aug 2020
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCV
BDL
80
70
0
13 Aug 2020
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
N. Kudryashova
Theoklitos Amvrosiadis
Nathalie Dupuy
Nathalie L Rochefort
A. Onken
60
5
0
03 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
82
74
0
01 Aug 2020
Towards Credit-Fraud Detection via Sparsely Varying Gaussian Approximations
Harshit Sharma
H. Gandhi
Apoorv Jain
13
0
0
14 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
17
0
0
13 Jul 2020
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
58
13
0
12 Jul 2020
Fast Variational Learning in State-Space Gaussian Process Models
Paul E. Chang
William J. Wilkinson
Mohammad Emtiyaz Khan
Arno Solin
BDL
79
24
0
09 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
71
56
0
30 Jun 2020
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
49
12
0
28 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
43
2
0
25 Jun 2020
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDL
DRL
65
12
0
23 Jun 2020
Towards Adaptive Benthic Habitat Mapping
J. Shields
Oscar Pizarro
Stefan B. Williams
47
15
0
20 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
80
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
90
116
0
18 Jun 2020
GPIRT: A Gaussian Process Model for Item Response Theory
JBrandon Duck-Mayr
Roman Garnett
Jacob Montgomery
23
8
0
17 Jun 2020
Gaussian Processes on Graphs via Spectral Kernel Learning
Yin-Cong Zhi
Yin Cheng Ng
Xiaowen Dong
39
32
0
12 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
18
2
0
12 Jun 2020
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
75
26
0
09 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Learning Inconsistent Preferences with Gaussian Processes
Siu Lun Chau
Javier I. González
Dino Sejdinovic
51
7
0
06 Jun 2020
Quadruply Stochastic Gaussian Processes
Trefor W. Evans
P. Nair
GP
38
3
0
04 Jun 2020
Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor Maneuvers
Gilhyun Ryou
E. Tal
S. Karaman
80
42
0
03 Jun 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
110
60
0
17 May 2020
Direct loss minimization algorithms for sparse Gaussian processes
Yadi Wei
Rishit Sheth
Roni Khardon
56
14
0
07 Apr 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
60
3
0
03 Apr 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
42
0
0
06 Mar 2020
Knot Selection in Sparse Gaussian Processes with a Variational Objective Function
Nathaniel Garton
Jarad Niemi
A. Carriquiry
27
2
0
05 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
100
95
0
02 Mar 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
54
4
0
26 Feb 2020
Knot Selection in Sparse Gaussian Processes
Nathaniel Garton
Jarad Niemi
A. Carriquiry
18
4
0
21 Feb 2020
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
26
1
0
02 Jan 2020
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Rui Zhang
Christian J. Walder
Edwin V. Bonilla
Marian-Andrei Rizoiu
Lexing Xie
8
2
0
21 Dec 2019
Scalable Bayesian Preference Learning for Crowds
Edwin Simpson
Iryna Gurevych
BDL
99
24
0
04 Dec 2019
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Jack K. Fitzsimons
Sebastian M. Schmon
Stephen J. Roberts
BDL
FedML
30
0
0
02 Dec 2019
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
96
5
0
22 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
38
14
0
05 Nov 2019
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
69
13
0
31 Oct 2019
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
56
5
0
16 Oct 2019
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Massimiliano Patacchiola
Jack Turner
Elliot J. Crowley
Michael F. P. O'Boyle
Amos Storkey
BDL
74
19
0
11 Oct 2019
Adversarial Vulnerability Bounds for Gaussian Process Classification
M. Smith
Kathrin Grosse
Michael Backes
Mauricio A. Alvarez
AAML
47
9
0
19 Sep 2019
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
50
3
0
14 Sep 2019
Latent Gaussian process with composite likelihoods and numerical quadrature
S. Ramchandran
Miika Koskinen
Harri Lähdesmäki
22
0
0
04 Sep 2019
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
95
5
0
19 Jul 2019
Interpretable Dynamics Models for Data-Efficient Reinforcement Learning
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
35
3
0
10 Jul 2019
An innovative adaptive kriging approach for efficient binary classification of mechanical problems
J. Fuhg
A. Fau
AI4CE
29
2
0
02 Jul 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
53
34
0
22 Jun 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
89
15
0
22 Jun 2019
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Tóth
Harald Oberhauser
38
9
0
19 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
76
561
0
17 Jun 2019
Previous
1
2
3
4
5
6
7
Next