ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2005
  4. Cited By
Scalable Variational Gaussian Process Classification

Scalable Variational Gaussian Process Classification

7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scalable Variational Gaussian Process Classification"

50 / 337 papers shown
Title
Improving predictions of Bayesian neural nets via local linearization
Improving predictions of Bayesian neural nets via local linearization
Alexander Immer
M. Korzepa
Matthias Bauer
BDL
80
11
0
19 Aug 2020
A statistical theory of cold posteriors in deep neural networks
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCVBDL
80
70
0
13 Aug 2020
Parametric Copula-GP model for analyzing multidimensional neuronal and
  behavioral relationships
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
N. Kudryashova
Theoklitos Amvrosiadis
Nathalie Dupuy
Nathalie L Rochefort
A. Onken
60
5
0
03 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
82
74
0
01 Aug 2020
Towards Credit-Fraud Detection via Sparsely Varying Gaussian
  Approximations
Towards Credit-Fraud Detection via Sparsely Varying Gaussian Approximations
Harshit Sharma
H. Gandhi
Apoorv Jain
13
0
0
14 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
17
0
0
13 Jul 2020
State Space Expectation Propagation: Efficient Inference Schemes for
  Temporal Gaussian Processes
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
58
13
0
12 Jul 2020
Fast Variational Learning in State-Space Gaussian Process Models
Fast Variational Learning in State-Space Gaussian Process Models
Paul E. Chang
William J. Wilkinson
Mohammad Emtiyaz Khan
Arno Solin
BDL
79
24
0
09 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
71
56
0
30 Jun 2020
Variational Autoencoding of PDE Inverse Problems
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
49
12
0
28 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian
  Optimisation
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
43
2
0
25 Jun 2020
Variational Orthogonal Features
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDLDRL
65
12
0
23 Jun 2020
Towards Adaptive Benthic Habitat Mapping
Towards Adaptive Benthic Habitat Mapping
J. Shields
Oscar Pizarro
Stefan B. Williams
47
15
0
20 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
80
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
90
116
0
18 Jun 2020
GPIRT: A Gaussian Process Model for Item Response Theory
GPIRT: A Gaussian Process Model for Item Response Theory
JBrandon Duck-Mayr
Roman Garnett
Jacob Montgomery
23
8
0
17 Jun 2020
Gaussian Processes on Graphs via Spectral Kernel Learning
Gaussian Processes on Graphs via Spectral Kernel Learning
Yin-Cong Zhi
Yin Cheng Ng
Xiaowen Dong
39
32
0
12 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
18
2
0
12 Jun 2020
Variational Auto-Regressive Gaussian Processes for Continual Learning
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
75
26
0
09 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Learning Inconsistent Preferences with Gaussian Processes
Learning Inconsistent Preferences with Gaussian Processes
Siu Lun Chau
Javier I. González
Dino Sejdinovic
51
7
0
06 Jun 2020
Quadruply Stochastic Gaussian Processes
Quadruply Stochastic Gaussian Processes
Trefor W. Evans
P. Nair
GP
38
3
0
04 Jun 2020
Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor
  Maneuvers
Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor Maneuvers
Gilhyun Ryou
E. Tal
S. Karaman
80
42
0
03 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
110
60
0
17 May 2020
Direct loss minimization algorithms for sparse Gaussian processes
Direct loss minimization algorithms for sparse Gaussian processes
Yadi Wei
Rishit Sheth
Roni Khardon
56
14
0
07 Apr 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
60
3
0
03 Apr 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCVBDL
42
0
0
06 Mar 2020
Knot Selection in Sparse Gaussian Processes with a Variational Objective
  Function
Knot Selection in Sparse Gaussian Processes with a Variational Objective Function
Nathaniel Garton
Jarad Niemi
A. Carriquiry
27
2
0
05 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
100
95
0
02 Mar 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian
  Process Models
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
54
4
0
26 Feb 2020
Knot Selection in Sparse Gaussian Processes
Knot Selection in Sparse Gaussian Processes
Nathaniel Garton
Jarad Niemi
A. Carriquiry
18
4
0
21 Feb 2020
Bayesian task embedding for few-shot Bayesian optimization
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
26
1
0
02 Jan 2020
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Rui Zhang
Christian J. Walder
Edwin V. Bonilla
Marian-Andrei Rizoiu
Lexing Xie
8
2
0
21 Dec 2019
Scalable Bayesian Preference Learning for Crowds
Scalable Bayesian Preference Learning for Crowds
Edwin Simpson
Iryna Gurevych
BDL
99
24
0
04 Dec 2019
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Jack K. Fitzsimons
Sebastian M. Schmon
Stephen J. Roberts
BDLFedML
30
0
0
02 Dec 2019
A Fully Natural Gradient Scheme for Improving Inference of the
  Heterogeneous Multi-Output Gaussian Process Model
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
96
5
0
22 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
38
14
0
05 Nov 2019
Continual Multi-task Gaussian Processes
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
69
13
0
31 Oct 2019
Parametric Gaussian Process Regressors
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
56
5
0
16 Oct 2019
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Massimiliano Patacchiola
Jack Turner
Elliot J. Crowley
Michael F. P. O'Boyle
Amos Storkey
BDL
74
19
0
11 Oct 2019
Adversarial Vulnerability Bounds for Gaussian Process Classification
Adversarial Vulnerability Bounds for Gaussian Process Classification
M. Smith
Kathrin Grosse
Michael Backes
Mauricio A. Alvarez
AAML
47
9
0
19 Sep 2019
Scalable Gaussian Process Classification with Additive Noise for Various
  Likelihoods
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
50
3
0
14 Sep 2019
Latent Gaussian process with composite likelihoods and numerical
  quadrature
Latent Gaussian process with composite likelihoods and numerical quadrature
S. Ramchandran
Miika Koskinen
Harri Lähdesmäki
22
0
0
04 Sep 2019
Kernel Mode Decomposition and programmable/interpretable regression
  networks
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
95
5
0
19 Jul 2019
Interpretable Dynamics Models for Data-Efficient Reinforcement Learning
Interpretable Dynamics Models for Data-Efficient Reinforcement Learning
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
35
3
0
10 Jul 2019
An innovative adaptive kriging approach for efficient binary
  classification of mechanical problems
An innovative adaptive kriging approach for efficient binary classification of mechanical problems
J. Fuhg
A. Fau
AI4CE
29
2
0
02 Jul 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
53
34
0
22 Jun 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart
  and inverse Wishart processes
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
89
15
0
22 Jun 2019
Bayesian Learning from Sequential Data using Gaussian Processes with
  Signature Covariances
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Tóth
Harald Oberhauser
38
9
0
19 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
76
561
0
17 Jun 2019
Previous
1234567
Next