ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2005
  4. Cited By
Scalable Variational Gaussian Process Classification

Scalable Variational Gaussian Process Classification

7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scalable Variational Gaussian Process Classification"

50 / 337 papers shown
Title
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
Sawan Kumar
Tapas Tripura
R. Nayek
S. Chakraborty
7
0
0
18 Jun 2025
Few-Shot Speech Deepfake Detection Adaptation with Gaussian Processes
Few-Shot Speech Deepfake Detection Adaptation with Gaussian Processes
Neta Glazer
David Chernin
Idan Achituve
Sharon Gannot
Ethan Fetaya
29
0
0
29 May 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
55
0
0
19 May 2025
Evaluating Uncertainty in Deep Gaussian Processes
Evaluating Uncertainty in Deep Gaussian Processes
Matthijs van der Lende
Jeremias Lino Ferrao
Niclas Müller-Hof
UQCV
70
0
0
24 Apr 2025
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Seunghun Lee
Jinyoung Park
Jaewon Chu
Minseo Yoon
H. Kim
BDL
88
2
0
21 Apr 2025
Surrogate-based optimization of system architectures subject to hidden constraints
Surrogate-based optimization of system architectures subject to hidden constraints
J. Bussemaker
P. Saves
N. Bartoli
T. Lefebvre
Björn Nagel
AI4CE
440
2
0
11 Apr 2025
Sparse Gaussian Neural Processes
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDLUQCV
189
0
0
02 Apr 2025
Mixed Likelihood Variational Gaussian Processes
Kaiwen Wu
Craig Sanders
Benjamin Letham
Phillip Guan
109
0
0
06 Mar 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
149
0
0
28 Jan 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
444
0
0
26 Jan 2025
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
101
0
0
23 Dec 2024
Task Diversity in Bayesian Federated Learning: Simultaneous Processing
  of Classification and Regression
Task Diversity in Bayesian Federated Learning: Simultaneous Processing of Classification and Regression
Junliang Lyu
Yixuan Zhang
Xiaoling Lu
Feng Zhou
FedML
132
1
0
14 Dec 2024
Gearing Gaussian process modeling and sequential design towards
  stochastic simulators
Gearing Gaussian process modeling and sequential design towards stochastic simulators
M. Binois
A. Fadikar
Abby Stevens
147
0
0
10 Dec 2024
Prediction of Acoustic Communication Performance for AUVs using Gaussian
  Process Classification
Prediction of Acoustic Communication Performance for AUVs using Gaussian Process Classification
Yifei Gao
Harun Yetkin
McMahon James
D. Stilwell
46
0
0
12 Nov 2024
Constrained composite Bayesian optimization for rational synthesis of polymeric particles
Constrained composite Bayesian optimization for rational synthesis of polymeric particles
Fanjin Wang
Maryam Parhizkar
Anthony Harker
Mohan Edirisinghe
84
0
0
06 Nov 2024
Computation-Aware Gaussian Processes: Model Selection And Linear-Time
  Inference
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
84
7
0
01 Nov 2024
Gaussian Derivative Change-point Detection for Early Warnings of
  Industrial System Failures
Gaussian Derivative Change-point Detection for Early Warnings of Industrial System Failures
Hao Zhao
Rong Pan
85
1
0
29 Oct 2024
Deep Q-Exponential Processes
Deep Q-Exponential Processes
Zhi Chang
Chukwudi Obite
Shuang Zhou
Shiwei Lan
BDL
60
0
0
29 Oct 2024
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
104
8
0
20 Oct 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
117
0
0
15 Oct 2024
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
186
0
0
07 Oct 2024
Amortized Variational Inference for Deep Gaussian Processes
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
30
0
0
18 Sep 2024
Towards Gaussian Process for operator learning: an uncertainty aware
  resolution independent operator learning algorithm for computational
  mechanics
Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics
Sawan Kumar
R. Nayek
Souvik Chakraborty
100
4
0
17 Sep 2024
Fully Bayesian Differential Gaussian Processes through Stochastic
  Differential Equations
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
55
0
0
12 Aug 2024
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel
  Precision Matrices
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel Precision Matrices
Frida Viset
Anton Kullberg
Frederiek Wesel
Arno Solin
104
0
0
05 Aug 2024
Aggregation Models with Optimal Weights for Distributed Gaussian
  Processes
Aggregation Models with Optimal Weights for Distributed Gaussian Processes
Liam Hebert
Sukhdeep S. Sodhi
57
0
0
01 Aug 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz
  Preconditioner
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
62
0
0
01 Aug 2024
Idiographic Personality Gaussian Process for Psychological Assessment
Idiographic Personality Gaussian Process for Psychological Assessment
Yehu Chen
Muchen Xi
Jacob Montgomery
Joshua Jackson
Roman Garnett
21
0
0
06 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
167
0
0
01 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
134
7
0
30 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
82
2
0
04 Jun 2024
Logistic Variational Bayes Revisited
Logistic Variational Bayes Revisited
M. Komodromos
Marina Evangelou
Sarah Filippi
BDL
50
0
0
02 Jun 2024
Stein Random Feature Regression
Stein Random Feature Regression
Houston Warren
Rafael Oliveira
Fabio Ramos
BDL
92
0
0
01 Jun 2024
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
Ilia Azizi
M. Boldi
V. Chavez-Demoulin
133
0
0
28 May 2024
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth
  Reconstruction
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction
Shengjie Liu
Lu Zhang
29
2
0
27 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural
  Networks
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAMLBDL
106
2
0
27 Apr 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
118
0
0
28 Mar 2024
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor
  Re-planning
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
Gilhyun Ryou
Geoffrey Wang
S. Karaman
106
3
0
13 Mar 2024
Sparse Variational Contaminated Noise Gaussian Process Regression with
  Applications in Geomagnetic Perturbations Forecasting
Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
Daniel Iong
Matthew McAnear
Yuezhou Qu
S. Zou
Gabor Toth
Yang Chen
28
0
0
27 Feb 2024
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library
  for Gaussian Processes and Variational Inference
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference
G. Edenhofer
Philipp Frank
Jakob Roth
R. Leike
Massin Guerdi
L. Scheel-Platz
M. Guardiani
Vincent Eberle
M. Westerkamp
T. Ensslin
88
9
0
26 Feb 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
108
2
0
22 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian
  Processes
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
37
1
0
15 Feb 2024
Boundary Exploration for Bayesian Optimization With Unknown Physical
  Constraints
Boundary Exploration for Bayesian Optimization With Unknown Physical Constraints
Yunsheng Tian
Ane Zuniga
Xinwei Zhang
Johannes P. Dürholt
Payel Das
Jie Chen
Wojciech Matusik
Mina Konakovic-Lukovic
86
2
0
12 Feb 2024
A Bayesian Gaussian Process-Based Latent Discriminative Generative
  Decoder (LDGD) Model for High-Dimensional Data
A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
Navid Ziaei
Behzad Nazari
Uri T. Eden
A. Widge
Ali Yousefi
36
3
0
29 Jan 2024
Efficient Nonparametric Tensor Decomposition for Binary and Count Data
Efficient Nonparametric Tensor Decomposition for Binary and Count Data
Zerui Tao
Toshihisa Tanaka
Qibin Zhao
69
2
0
15 Jan 2024
Fine-grained Forecasting Models Via Gaussian Process Blurring Effect
Fine-grained Forecasting Models Via Gaussian Process Blurring Effect
Sepideh Koohfar
Laura Dietz
DiffMAI4TS
54
0
0
21 Dec 2023
A Kronecker product accelerated efficient sparse Gaussian Process
  (E-SGP) for flow emulation
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
48
0
0
13 Dec 2023
Sparse Variational Student-t Processes
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
118
1
0
09 Dec 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard Turner
Aapo Hyvarinen
CML
113
3
0
28 Nov 2023
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
66
2
0
21 Nov 2023
1234567
Next