Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.2005
Cited By
Scalable Variational Gaussian Process Classification
7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Scalable Variational Gaussian Process Classification"
50 / 337 papers shown
Title
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
Sawan Kumar
Tapas Tripura
R. Nayek
S. Chakraborty
7
0
0
18 Jun 2025
Few-Shot Speech Deepfake Detection Adaptation with Gaussian Processes
Neta Glazer
David Chernin
Idan Achituve
Sharon Gannot
Ethan Fetaya
29
0
0
29 May 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
55
0
0
19 May 2025
Evaluating Uncertainty in Deep Gaussian Processes
Matthijs van der Lende
Jeremias Lino Ferrao
Niclas Müller-Hof
UQCV
70
0
0
24 Apr 2025
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Seunghun Lee
Jinyoung Park
Jaewon Chu
Minseo Yoon
H. Kim
BDL
88
2
0
21 Apr 2025
Surrogate-based optimization of system architectures subject to hidden constraints
J. Bussemaker
P. Saves
N. Bartoli
T. Lefebvre
Björn Nagel
AI4CE
440
2
0
11 Apr 2025
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
189
0
0
02 Apr 2025
Mixed Likelihood Variational Gaussian Processes
Kaiwen Wu
Craig Sanders
Benjamin Letham
Phillip Guan
109
0
0
06 Mar 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
149
0
0
28 Jan 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
444
0
0
26 Jan 2025
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
101
0
0
23 Dec 2024
Task Diversity in Bayesian Federated Learning: Simultaneous Processing of Classification and Regression
Junliang Lyu
Yixuan Zhang
Xiaoling Lu
Feng Zhou
FedML
132
1
0
14 Dec 2024
Gearing Gaussian process modeling and sequential design towards stochastic simulators
M. Binois
A. Fadikar
Abby Stevens
147
0
0
10 Dec 2024
Prediction of Acoustic Communication Performance for AUVs using Gaussian Process Classification
Yifei Gao
Harun Yetkin
McMahon James
D. Stilwell
46
0
0
12 Nov 2024
Constrained composite Bayesian optimization for rational synthesis of polymeric particles
Fanjin Wang
Maryam Parhizkar
Anthony Harker
Mohan Edirisinghe
84
0
0
06 Nov 2024
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
84
7
0
01 Nov 2024
Gaussian Derivative Change-point Detection for Early Warnings of Industrial System Failures
Hao Zhao
Rong Pan
85
1
0
29 Oct 2024
Deep Q-Exponential Processes
Zhi Chang
Chukwudi Obite
Shuang Zhou
Shiwei Lan
BDL
60
0
0
29 Oct 2024
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
104
8
0
20 Oct 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
117
0
0
15 Oct 2024
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
186
0
0
07 Oct 2024
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
30
0
0
18 Sep 2024
Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics
Sawan Kumar
R. Nayek
Souvik Chakraborty
100
4
0
17 Sep 2024
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
55
0
0
12 Aug 2024
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel Precision Matrices
Frida Viset
Anton Kullberg
Frederiek Wesel
Arno Solin
104
0
0
05 Aug 2024
Aggregation Models with Optimal Weights for Distributed Gaussian Processes
Liam Hebert
Sukhdeep S. Sodhi
57
0
0
01 Aug 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
62
0
0
01 Aug 2024
Idiographic Personality Gaussian Process for Psychological Assessment
Yehu Chen
Muchen Xi
Jacob Montgomery
Joshua Jackson
Roman Garnett
21
0
0
06 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
167
0
0
01 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
134
7
0
30 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
82
2
0
04 Jun 2024
Logistic Variational Bayes Revisited
M. Komodromos
Marina Evangelou
Sarah Filippi
BDL
50
0
0
02 Jun 2024
Stein Random Feature Regression
Houston Warren
Rafael Oliveira
Fabio Ramos
BDL
92
0
0
01 Jun 2024
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
Ilia Azizi
M. Boldi
V. Chavez-Demoulin
133
0
0
28 May 2024
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction
Shengjie Liu
Lu Zhang
29
2
0
27 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
106
2
0
27 Apr 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
118
0
0
28 Mar 2024
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
Gilhyun Ryou
Geoffrey Wang
S. Karaman
106
3
0
13 Mar 2024
Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
Daniel Iong
Matthew McAnear
Yuezhou Qu
S. Zou
Gabor Toth
Yang Chen
28
0
0
27 Feb 2024
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference
G. Edenhofer
Philipp Frank
Jakob Roth
R. Leike
Massin Guerdi
L. Scheel-Platz
M. Guardiani
Vincent Eberle
M. Westerkamp
T. Ensslin
88
9
0
26 Feb 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
108
2
0
22 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
37
1
0
15 Feb 2024
Boundary Exploration for Bayesian Optimization With Unknown Physical Constraints
Yunsheng Tian
Ane Zuniga
Xinwei Zhang
Johannes P. Dürholt
Payel Das
Jie Chen
Wojciech Matusik
Mina Konakovic-Lukovic
86
2
0
12 Feb 2024
A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
Navid Ziaei
Behzad Nazari
Uri T. Eden
A. Widge
Ali Yousefi
36
3
0
29 Jan 2024
Efficient Nonparametric Tensor Decomposition for Binary and Count Data
Zerui Tao
Toshihisa Tanaka
Qibin Zhao
69
2
0
15 Jan 2024
Fine-grained Forecasting Models Via Gaussian Process Blurring Effect
Sepideh Koohfar
Laura Dietz
DiffM
AI4TS
54
0
0
21 Dec 2023
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
48
0
0
13 Dec 2023
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
118
1
0
09 Dec 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard Turner
Aapo Hyvarinen
CML
113
3
0
28 Nov 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
66
2
0
21 Nov 2023
1
2
3
4
5
6
7
Next