Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.2005
Cited By
Scalable Variational Gaussian Process Classification
7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Scalable Variational Gaussian Process Classification"
37 / 337 papers shown
Title
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde
Markus Heinonen
Samuel Kaski
26
5
0
13 Mar 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
93
366
0
26 Feb 2018
Conditionally Independent Multiresolution Gaussian Processes
Jalil Taghia
Thomas B. Schon
64
1
0
25 Feb 2018
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
F. Wenzel
Théo Galy-Fajou
Christian Donner
Marius Kloft
Manfred Opper
87
36
0
18 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
90
52
0
08 Feb 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
63
75
0
28 Nov 2017
Fidelity-Weighted Learning
Mostafa Dehghani
Arash Mehrjou
Stephan Gouws
J. Kamps
Bernhard Schölkopf
NoLa
FedML
96
75
0
08 Nov 2017
Structured Variational Inference for Coupled Gaussian Processes
Vincent Adam
50
2
0
03 Nov 2017
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
87
62
0
19 Oct 2017
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
62
19
0
08 Oct 2017
Neural network an1alysis of sleep stages enables efficient diagnosis of narcolepsy
Jens B. Stephansen
A. N. Olesen
Mads Olsen
A. Ambati
E. Leary
...
C. Kushida
P. Peppard
H. Sørensen
P. Jennum
Emmanuel Mignot
88
228
0
05 Oct 2017
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
85
132
0
06 Sep 2017
Pillar Networks++: Distributed non-parametric deep and wide networks
B. Sengupta
Y. Qian
29
4
0
18 Aug 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
73
60
0
16 Aug 2017
Bayesian Nonlinear Support Vector Machines for Big Data
F. Wenzel
Théo Galy-Fajou
M. Deutsch
Marius Kloft
BDL
65
27
0
18 Jul 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
117
172
0
08 Jul 2017
Scalable Multi-Class Gaussian Process Classification using Expectation Propagation
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
70
19
0
22 Jun 2017
Streaming Sparse Gaussian Process Approximations
T. Bui
Cuong V Nguyen
Richard Turner
76
103
0
19 May 2017
Parametric Gaussian Process Regression for Big Data
M. Raissi
91
39
0
11 Apr 2017
Treatment-Response Models for Counterfactual Reasoning with Continuous-time, Continuous-valued Interventions
Hossein Soleimani
Adarsh Subbaswamy
Suchi Saria
CML
73
23
0
06 Apr 2017
Occupancy Map Building through Bayesian Exploration
Gilad Francis
Lionel Ott
Román Marchant
F. Ramos
81
22
0
01 Mar 2017
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
93
202
0
21 Nov 2016
Faster variational inducing input Gaussian process classification
Pavel Izmailov
D. Kropotov
30
2
0
18 Nov 2016
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
131
267
0
01 Nov 2016
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
89
665
0
27 Oct 2016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
61
54
0
18 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
58
144
0
14 Oct 2016
Gray-box inference for structured Gaussian process models
P. Galliani
Amir Dezfouli
Edwin V. Bonilla
Novi Quadrianto
BDL
23
4
0
14 Sep 2016
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
64
28
0
02 Sep 2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
72
259
0
15 Jun 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
89
25
0
23 May 2016
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
47
59
0
18 Apr 2016
Stochastic Expectation Propagation for Large Scale Gaussian Process Classification
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Yingzhen Li
T. Bui
Richard Turner
BDL
34
0
0
10 Nov 2015
String and Membrane Gaussian Processes
Yves-Laurent Kom Samo
Stephen J. Roberts
85
18
0
24 Jul 2015
Scalable Gaussian Process Classification via Expectation Propagation
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
77
52
0
16 Jul 2015
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
83
141
0
12 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
115
192
0
27 Apr 2015
Previous
1
2
3
4
5
6
7