ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2005
  4. Cited By
Scalable Variational Gaussian Process Classification

Scalable Variational Gaussian Process Classification

7 November 2014
J. Hensman
A. G. Matthews
Zoubin Ghahramani
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scalable Variational Gaussian Process Classification"

50 / 337 papers shown
Title
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
114
82
0
12 Jun 2019
Kernelized Capsule Networks
Kernelized Capsule Networks
Taylor W. Killian
Justin A. Goodwin
Olivia M. Brown
Sung-Hyun Son
GAN
52
2
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
197
1,707
0
06 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual
  Estimation with an I/O Kernel
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
84
54
0
03 Jun 2019
Accelerating Monte Carlo Bayesian Inference via Approximating Predictive
  Uncertainty over Simplex
Accelerating Monte Carlo Bayesian Inference via Approximating Predictive Uncertainty over Simplex
Yufei Cui
Wuguannan Yao
Qiao Li
Antoni B. Chan
Chun Jason Xue
34
4
0
29 May 2019
Adversarial Robustness Guarantees for Classification with Gaussian
  Processes
Adversarial Robustness Guarantees for Classification with Gaussian Processes
Arno Blaas
A. Patané
Luca Laurenti
L. Cardelli
Marta Z. Kwiatkowska
Stephen J. Roberts
GPAAML
75
21
0
28 May 2019
Multi-Class Gaussian Process Classification Made Conjugate: Efficient
  Inference via Data Augmentation
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation
Théo Galy-Fajou
F. Wenzel
Christian Donner
Manfred Opper
60
30
0
23 May 2019
Efficient Deep Gaussian Process Models for Variable-Sized Input
Efficient Deep Gaussian Process Models for Variable-Sized Input
I. Laradji
Mark Schmidt
Vladimir Pavlovic
Minyoung Kim
GPBDL
33
3
0
16 May 2019
Distribution Calibration for Regression
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
192
112
0
15 May 2019
Graph Convolutional Gaussian Processes
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
118
36
0
14 May 2019
Multi-fidelity classification using Gaussian processes: accelerating the
  prediction of large-scale computational models
Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models
F. Sahli Costabal
P. Perdikaris
E. Kuhl
D. Hurtado
AI4CE
43
48
0
09 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
66
23
0
10 Apr 2019
Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable
  Information Sources
Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources
Edwin Simpson
S. Reece
Stephen J. Roberts
64
3
0
05 Apr 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
62
230
0
19 Mar 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
65
241
0
14 Mar 2019
Scalable Grouped Gaussian Processes via Direct Cholesky Functional
  Representations
Scalable Grouped Gaussian Processes via Direct Cholesky Functional Representations
A. Dahl
Edwin V. Bonilla
16
0
0
10 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
76
155
0
08 Mar 2019
Local Function Complexity for Active Learning via Mixture of Gaussian
  Processes
Local Function Complexity for Active Learning via Mixture of Gaussian Processes
Danny Panknin
Stefan Chmiela
Klaus-Robert Muller
Shinichi Nakajima
73
0
0
27 Feb 2019
Banded Matrix Operators for Gaussian Markov Models in the Automatic
  Differentiation Era
Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era
N. Durrande
Vincent Adam
L. Bordeaux
Stefanos Eleftheriadis
J. Hensman
68
26
0
26 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCVBDL
161
32
0
15 Feb 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLLBDL
71
187
0
31 Jan 2019
Variational bridge constructs for approximate Gaussian process
  regression
Variational bridge constructs for approximate Gaussian process regression
W. Ward
Mauricio A. Alvarez
13
1
0
07 Jan 2019
Scalable GAM using sparse variational Gaussian processes
Scalable GAM using sparse variational Gaussian processes
Vincent Adam
N. Durrande
S. T. John
33
2
0
28 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
91
56
0
27 Nov 2018
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
50
9
0
27 Nov 2018
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization
  Bounds
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
71
34
0
29 Oct 2018
Learning and Interpreting Multi-Multi-Instance Learning Networks
Learning and Interpreting Multi-Multi-Instance Learning Networks
Alessandro Tibo
M. Jaeger
P. Frasconi
AI4CE
138
23
0
26 Oct 2018
Data Association with Gaussian Processes
Data Association with Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
28
0
0
16 Oct 2018
Decomposing feature-level variation with Covariate Gaussian Process
  Latent Variable Models
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens
Kieran R. Campbell
C. Yau
19
0
0
16 Oct 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
81
17
0
10 Oct 2018
Deep learning with differential Gaussian process flows
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
85
42
0
09 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
86
61
0
06 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
149
1,105
0
28 Sep 2018
Gaussian process classification using posterior linearisation
Gaussian process classification using posterior linearisation
Á. F. García-Fernández
Filip Tronarp
Simo Särkkä
62
11
0
13 Sep 2018
Non-Parametric Variational Inference with Graph Convolutional Networks
  for Gaussian Processes
Non-Parametric Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
Liping Liu
BDL
25
0
0
08 Sep 2018
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
92
86
0
16 Aug 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
49
12
0
06 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Spatiotemporal Prediction of Ambulance Demand using Gaussian Process
  Regression
Spatiotemporal Prediction of Ambulance Demand using Gaussian Process Regression
Seth Nabarro
Tristan Fletcher
John Shawe-Taylor
GP
11
2
0
28 Jun 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
76
15
0
26 Jun 2018
Scalable Multi-Class Bayesian Support Vector Machines for Structured and
  Unstructured Data
Scalable Multi-Class Bayesian Support Vector Machines for Structured and Unstructured Data
Martin Wistuba
Ambrish Rawat
BDL
52
2
0
07 Jun 2018
Grouped Gaussian Processes for Solar Power Prediction
Grouped Gaussian Processes for Solar Power Prediction
A. Dahl
Edwin V. Bonilla
15
20
0
07 Jun 2018
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Edwin Simpson
Iryna Gurevych
BDL
64
52
0
06 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDLGP
99
30
0
05 Jun 2018
Deep Mixed Effect Model using Gaussian Processes: A Personalized and
  Reliable Prediction for Healthcare
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
Ingyo Chung
Saehoon Kim
Juho Lee
Kwang Joon Kim
Sung Ju Hwang
Eunho Yang
BDLFedML
82
16
0
05 Jun 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated
  Classification
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
78
75
0
28 May 2018
Efficient Inference in Multi-task Cox Process Models
Efficient Inference in Multi-task Cox Process Models
Virginia Aglietti
Theodoros Damoulas
Edwin V. Bonilla
60
8
0
24 May 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
48
38
0
22 May 2018
Heterogeneous Multi-output Gaussian Process Prediction
Heterogeneous Multi-output Gaussian Process Prediction
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
59
72
0
19 May 2018
Scalable Generalized Dynamic Topic Models
Scalable Generalized Dynamic Topic Models
P. Jähnichen
F. Wenzel
Marius Kloft
Stephan Mandt
BDL
88
40
0
21 Mar 2018
Previous
1234567
Next