ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
v1v2v3v4 (latest)

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 588 papers shown
Title
On Communication Compression for Distributed Optimization on
  Heterogeneous Data
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
93
23
0
04 Sep 2020
Extensions to the Proximal Distance Method of Constrained Optimization
Extensions to the Proximal Distance Method of Constrained Optimization
Alfonso Landeros
Oscar Hernan Madrid Padilla
Hua Zhou
K. Lange
58
9
0
02 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
77
0
0
26 Aug 2020
Adaptive Hierarchical Hyper-gradient Descent
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
54
5
0
17 Aug 2020
Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field
  Control/Game in Continuous Time
Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time
Weichen Wang
Jiequn Han
Zhuoran Yang
Zhaoran Wang
90
29
0
16 Aug 2020
FedSKETCH: Communication-Efficient and Private Federated Learning via
  Sketching
FedSKETCH: Communication-Efficient and Private Federated Learning via Sketching
Farzin Haddadpour
Belhal Karimi
Ping Li
Xiaoyun Li
FedML
80
32
0
11 Aug 2020
An improved convergence analysis for decentralized online stochastic
  non-convex optimization
An improved convergence analysis for decentralized online stochastic non-convex optimization
Ran Xin
U. Khan
S. Kar
112
104
0
10 Aug 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
165
217
0
08 Aug 2020
Analyzing Upper Bounds on Mean Absolute Errors for Deep Neural Network
  Based Vector-to-Vector Regression
Analyzing Upper Bounds on Mean Absolute Errors for Deep Neural Network Based Vector-to-Vector Regression
Jun Qi
Jun Du
Sabato Marco Siniscalchi
Xiaoli Ma
Chin-Hui Lee
105
42
0
04 Aug 2020
On the Convergence of SGD with Biased Gradients
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
78
90
0
31 Jul 2020
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
Jun Shu
Yanwen Zhu
Qian Zhao
Zongben Xu
Deyu Meng
66
7
0
29 Jul 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
87
37
0
09 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
59
50
0
08 Jul 2020
Understanding the Impact of Model Incoherence on Convergence of
  Incremental SGD with Random Reshuffle
Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
Shaocong Ma
Yi Zhou
39
3
0
07 Jul 2020
Variance reduction for Riemannian non-convex optimization with batch
  size adaptation
Variance reduction for Riemannian non-convex optimization with batch size adaptation
Andi Han
Junbin Gao
85
5
0
03 Jul 2020
Tilted Empirical Risk Minimization
Tilted Empirical Risk Minimization
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
89
135
0
02 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp
  Guarantees
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
101
280
0
02 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
72
202
0
26 Jun 2020
Randomized Block-Diagonal Preconditioning for Parallel Learning
Randomized Block-Diagonal Preconditioning for Parallel Learning
Celestine Mendler-Dünner
Aurelien Lucchi
12
1
0
24 Jun 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
  Tighter Generalization Bounds
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
96
25
0
24 Jun 2020
Towards Understanding Label Smoothing
Towards Understanding Label Smoothing
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
UQCV
55
42
0
20 Jun 2020
A Better Alternative to Error Feedback for Communication-Efficient
  Distributed Learning
A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning
Samuel Horváth
Peter Richtárik
79
60
0
19 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
71
4
0
19 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
120
76
0
18 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
81
78
0
17 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
134
11
0
16 Jun 2020
Walking in the Shadow: A New Perspective on Descent Directions for
  Constrained Minimization
Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization
Hassan Mortagy
Swati Gupta
Sebastian Pokutta
54
7
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
99
52
0
14 Jun 2020
A Unified Analysis of Stochastic Gradient Methods for Nonconvex
  Federated Optimization
A Unified Analysis of Stochastic Gradient Methods for Nonconvex Federated Optimization
Zhize Li
Peter Richtárik
FedML
93
36
0
12 Jun 2020
SGD with shuffling: optimal rates without component convexity and large
  epoch requirements
SGD with shuffling: optimal rates without component convexity and large epoch requirements
Kwangjun Ahn
Chulhee Yun
S. Sra
68
67
0
12 Jun 2020
STL-SGD: Speeding Up Local SGD with Stagewise Communication Period
STL-SGD: Speeding Up Local SGD with Stagewise Communication Period
Shuheng Shen
Yifei Cheng
Jingchang Liu
Linli Xu
LRM
70
7
0
11 Jun 2020
Asymptotic Analysis of Conditioned Stochastic Gradient Descent
Asymptotic Analysis of Conditioned Stochastic Gradient Descent
Rémi Leluc
Franccois Portier
75
4
0
04 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
100
70
0
03 Jun 2020
The Effects of Mild Over-parameterization on the Optimization Landscape
  of Shallow ReLU Neural Networks
The Effects of Mild Over-parameterization on the Optimization Landscape of Shallow ReLU Neural Networks
Itay Safran
Gilad Yehudai
Ohad Shamir
146
35
0
01 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
Subgradient Regularized Multivariate Convex Regression at Scale
Subgradient Regularized Multivariate Convex Regression at Scale
Wenyu Chen
Rahul Mazumder
45
8
0
23 May 2020
Exponential ergodicity of mirror-Langevin diffusions
Exponential ergodicity of mirror-Langevin diffusions
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
Austin J. Stromme
69
51
0
19 May 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
71
9
0
11 Apr 2020
Convergence rates and approximation results for SGD and its
  continuous-time counterpart
Convergence rates and approximation results for SGD and its continuous-time counterpart
Xavier Fontaine
Valentin De Bortoli
Alain Durmus
14
7
0
08 Apr 2020
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient
  Descent on Bottou-Curtis-Nocedal Functions
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
V. Patel
74
23
0
01 Apr 2020
Finite-Time Analysis of Stochastic Gradient Descent under Markov
  Randomness
Finite-Time Analysis of Stochastic Gradient Descent under Markov Randomness
Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
75
22
0
24 Mar 2020
Solving Non-Convex Non-Differentiable Min-Max Games using Proximal
  Gradient Method
Solving Non-Convex Non-Differentiable Min-Max Games using Proximal Gradient Method
Babak Barazandeh
Meisam Razaviyayn
46
24
0
18 Mar 2020
The Implicit Regularization of Stochastic Gradient Flow for Least
  Squares
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali
Yan Sun
Robert Tibshirani
94
77
0
17 Mar 2020
Boosting Frank-Wolfe by Chasing Gradients
Boosting Frank-Wolfe by Chasing Gradients
Cyrille W. Combettes
Sebastian Pokutta
76
29
0
13 Mar 2020
Machine Learning on Volatile Instances
Machine Learning on Volatile Instances
Xiaoxi Zhang
Jianyu Wang
Gauri Joshi
Carlee Joe-Wong
54
25
0
12 Mar 2020
Stochastic Coordinate Minimization with Progressive Precision for
  Stochastic Convex Optimization
Stochastic Coordinate Minimization with Progressive Precision for Stochastic Convex Optimization
Sudeep Salgia
Qing Zhao
Sattar Vakili
77
2
0
11 Mar 2020
Communication-efficient Variance-reduced Stochastic Gradient Descent
Communication-efficient Variance-reduced Stochastic Gradient Descent
H. S. Ghadikolaei
Sindri Magnússon
52
3
0
10 Mar 2020
Revisiting SGD with Increasingly Weighted Averaging: Optimization and
  Generalization Perspectives
Revisiting SGD with Increasingly Weighted Averaging: Optimization and Generalization Perspectives
Zhishuai Guo
Yan Yan
Tianbao Yang
MoMe
63
4
0
09 Mar 2020
Theoretical Analysis of Divide-and-Conquer ERM: Beyond Square Loss and
  RKHS
Theoretical Analysis of Divide-and-Conquer ERM: Beyond Square Loss and RKHS
Yong Liu
Lizhong Ding
Weiping Wang
18
0
0
09 Mar 2020
Approximate Cross-validation: Guarantees for Model Assessment and
  Selection
Approximate Cross-validation: Guarantees for Model Assessment and Selection
Ashia Wilson
Maximilian Kasy
Lester W. Mackey
67
23
0
02 Mar 2020
Previous
123...10111289
Next