Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04636
Cited By
v1
v2
v3
v4 (latest)
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 588 papers shown
Title
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
93
23
0
04 Sep 2020
Extensions to the Proximal Distance Method of Constrained Optimization
Alfonso Landeros
Oscar Hernan Madrid Padilla
Hua Zhou
K. Lange
58
9
0
02 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
77
0
0
26 Aug 2020
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
54
5
0
17 Aug 2020
Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time
Weichen Wang
Jiequn Han
Zhuoran Yang
Zhaoran Wang
90
29
0
16 Aug 2020
FedSKETCH: Communication-Efficient and Private Federated Learning via Sketching
Farzin Haddadpour
Belhal Karimi
Ping Li
Xiaoyun Li
FedML
80
32
0
11 Aug 2020
An improved convergence analysis for decentralized online stochastic non-convex optimization
Ran Xin
U. Khan
S. Kar
112
104
0
10 Aug 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
165
217
0
08 Aug 2020
Analyzing Upper Bounds on Mean Absolute Errors for Deep Neural Network Based Vector-to-Vector Regression
Jun Qi
Jun Du
Sabato Marco Siniscalchi
Xiaoli Ma
Chin-Hui Lee
105
42
0
04 Aug 2020
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
78
90
0
31 Jul 2020
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
Jun Shu
Yanwen Zhu
Qian Zhao
Zongben Xu
Deyu Meng
66
7
0
29 Jul 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
87
37
0
09 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
59
50
0
08 Jul 2020
Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
Shaocong Ma
Yi Zhou
39
3
0
07 Jul 2020
Variance reduction for Riemannian non-convex optimization with batch size adaptation
Andi Han
Junbin Gao
85
5
0
03 Jul 2020
Tilted Empirical Risk Minimization
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
89
135
0
02 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
101
280
0
02 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
72
202
0
26 Jun 2020
Randomized Block-Diagonal Preconditioning for Parallel Learning
Celestine Mendler-Dünner
Aurelien Lucchi
12
1
0
24 Jun 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
96
25
0
24 Jun 2020
Towards Understanding Label Smoothing
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
UQCV
55
42
0
20 Jun 2020
A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning
Samuel Horváth
Peter Richtárik
79
60
0
19 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
71
4
0
19 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
120
76
0
18 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
81
78
0
17 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
134
11
0
16 Jun 2020
Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization
Hassan Mortagy
Swati Gupta
Sebastian Pokutta
54
7
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
99
52
0
14 Jun 2020
A Unified Analysis of Stochastic Gradient Methods for Nonconvex Federated Optimization
Zhize Li
Peter Richtárik
FedML
93
36
0
12 Jun 2020
SGD with shuffling: optimal rates without component convexity and large epoch requirements
Kwangjun Ahn
Chulhee Yun
S. Sra
68
67
0
12 Jun 2020
STL-SGD: Speeding Up Local SGD with Stagewise Communication Period
Shuheng Shen
Yifei Cheng
Jingchang Liu
Linli Xu
LRM
70
7
0
11 Jun 2020
Asymptotic Analysis of Conditioned Stochastic Gradient Descent
Rémi Leluc
Franccois Portier
75
4
0
04 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
100
70
0
03 Jun 2020
The Effects of Mild Over-parameterization on the Optimization Landscape of Shallow ReLU Neural Networks
Itay Safran
Gilad Yehudai
Ohad Shamir
146
35
0
01 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
Subgradient Regularized Multivariate Convex Regression at Scale
Wenyu Chen
Rahul Mazumder
45
8
0
23 May 2020
Exponential ergodicity of mirror-Langevin diffusions
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
Austin J. Stromme
69
51
0
19 May 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
71
9
0
11 Apr 2020
Convergence rates and approximation results for SGD and its continuous-time counterpart
Xavier Fontaine
Valentin De Bortoli
Alain Durmus
14
7
0
08 Apr 2020
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
V. Patel
74
23
0
01 Apr 2020
Finite-Time Analysis of Stochastic Gradient Descent under Markov Randomness
Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
75
22
0
24 Mar 2020
Solving Non-Convex Non-Differentiable Min-Max Games using Proximal Gradient Method
Babak Barazandeh
Meisam Razaviyayn
46
24
0
18 Mar 2020
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali
Yan Sun
Robert Tibshirani
94
77
0
17 Mar 2020
Boosting Frank-Wolfe by Chasing Gradients
Cyrille W. Combettes
Sebastian Pokutta
76
29
0
13 Mar 2020
Machine Learning on Volatile Instances
Xiaoxi Zhang
Jianyu Wang
Gauri Joshi
Carlee Joe-Wong
54
25
0
12 Mar 2020
Stochastic Coordinate Minimization with Progressive Precision for Stochastic Convex Optimization
Sudeep Salgia
Qing Zhao
Sattar Vakili
77
2
0
11 Mar 2020
Communication-efficient Variance-reduced Stochastic Gradient Descent
H. S. Ghadikolaei
Sindri Magnússon
52
3
0
10 Mar 2020
Revisiting SGD with Increasingly Weighted Averaging: Optimization and Generalization Perspectives
Zhishuai Guo
Yan Yan
Tianbao Yang
MoMe
63
4
0
09 Mar 2020
Theoretical Analysis of Divide-and-Conquer ERM: Beyond Square Loss and RKHS
Yong Liu
Lizhong Ding
Weiping Wang
18
0
0
09 Mar 2020
Approximate Cross-validation: Guarantees for Model Assessment and Selection
Ashia Wilson
Maximilian Kasy
Lester W. Mackey
67
23
0
02 Mar 2020
Previous
1
2
3
...
10
11
12
8
9
Next