ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04977
  4. Cited By
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

15 March 2017
Alex Kendall
Y. Gal
    BDL
    OOD
    UD
    UQCV
    PER
ArXivPDFHTML

Papers citing "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?"

50 / 2,213 papers shown
Title
A Decision-driven Methodology for Designing Uncertainty-aware AI
  Self-Assessment
A Decision-driven Methodology for Designing Uncertainty-aware AI Self-Assessment
Charles Oredola
Vladimir Leung
Adnan Ashraf
Eric Heim
I-Jeng Wang
46
1
0
02 Aug 2024
Adaptive Contrastive Decoding in Retrieval-Augmented Generation for
  Handling Noisy Contexts
Adaptive Contrastive Decoding in Retrieval-Augmented Generation for Handling Noisy Contexts
Youna Kim
Hyuhng Joon Kim
Cheonbok Park
Choonghyun Park
Hyunsoo Cho
Junyeob Kim
Kang Min Yoo
Sang-goo Lee
Taeuk Kim
36
5
0
02 Aug 2024
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object
  Detection
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
A. Benfenati
P. Causin
Hang Yu
Zhedong Zheng
3DPC
46
2
0
01 Aug 2024
Optimizing Long-tailed Link Prediction in Graph Neural Networks through
  Structure Representation Enhancement
Optimizing Long-tailed Link Prediction in Graph Neural Networks through Structure Representation Enhancement
Yakun Wang
Daixin Wang
Hongrui Liu
Bin Hu
Yingcui Yan
Qiyang Zhang
Qing Cui
35
6
0
30 Jul 2024
A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific
  Fitting
A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting
Zhao Mingyang
Jia Xiaohong
Lei Ma
Yuke Shi
Jingen Jiang
Qizhai Li
Ming-Hsuan Yang
Huang Tiejun
39
1
0
27 Jul 2024
IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs
IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs
Jingpeng Xie
Shiyu Tan
Yuanlei Wang
Yizhen Lao
Yifei Xue
Yizhen Lao
53
0
0
26 Jul 2024
SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and
  Active Sensing
SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing
Changchang Yin
Ruoqi Liu
Bingsheng Yao
Dongdong Zhang
Jeffrey Caterino
Ping Zhang
27
42
0
24 Jul 2024
Probabilistic Parameter Estimators and Calibration Metrics for Pose
  Estimation from Image Features
Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
Romeo Valentin
Sydney M. Katz
Joonghyun Lee
Don Walker
Matthew Sorgenfrei
Mykel J. Kochenderfer
36
0
0
23 Jul 2024
Dataset Distillation by Automatic Training Trajectories
Dataset Distillation by Automatic Training Trajectories
Dai Liu
Jindong Gu
Hu Cao
Carsten Trinitis
Martin Schulz
DD
43
11
0
19 Jul 2024
Unmasking Social Bots: How Confident Are We?
Unmasking Social Bots: How Confident Are We?
J. Giroux
Ariyarathne Gangani
Alexander C. Nwala
C. Fanelli
31
1
0
18 Jul 2024
Weakly-Supervised 3D Hand Reconstruction with Knowledge Prior and
  Uncertainty Guidance
Weakly-Supervised 3D Hand Reconstruction with Knowledge Prior and Uncertainty Guidance
Yufei Zhang
Jeffrey O. Kephart
Qiang Ji
3DH
31
0
0
17 Jul 2024
cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet
  Process
cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process
Yihang Chen
Tsai Hor Chan
Guosheng Yin
Yuming Jiang
Lequan Yu
35
0
0
16 Jul 2024
ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with
  Probabilistic Fusion
ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with Probabilistic Fusion
Sungmin Woo
Wonjoon Lee
Woo Jin Kim
Dogyoon Lee
Sangyoun Lee
MDE
20
3
0
12 Jul 2024
The Misclassification Likelihood Matrix: Some Classes Are More Likely To
  Be Misclassified Than Others
The Misclassification Likelihood Matrix: Some Classes Are More Likely To Be Misclassified Than Others
Daniel Sikar
Artur Garcez
Robin Bloomfield
Tillman Weyde
Kaleem Peeroo
Naman Singh
Maeve Hutchinson
Dany Laksono
Mirela Reljan-Delaney
46
2
0
10 Jul 2024
SUMix: Mixup with Semantic and Uncertain Information
SUMix: Mixup with Semantic and Uncertain Information
Huafeng Qin
Xin Jin
Hongyu Zhu
Hongchao Liao
M. El-Yacoubi
Xinbo Gao
UQCV
51
6
0
10 Jul 2024
FUNAvg: Federated Uncertainty Weighted Averaging for Datasets with
  Diverse Labels
FUNAvg: Federated Uncertainty Weighted Averaging for Datasets with Diverse Labels
Malte Tolle
Fernando Navarro
Sebastian Eble
Ivo Wolf
Bjoern H. Menze
Sandy Engelhardt
FedML
45
1
0
10 Jul 2024
OpenCIL: Benchmarking Out-of-Distribution Detection in Class-Incremental
  Learning
OpenCIL: Benchmarking Out-of-Distribution Detection in Class-Incremental Learning
Wenjun Miao
Guansong Pang
Trong-Tung Nguyen
Ruohang Fang
Jin Zheng
Xiao Bai
OODD
42
1
0
08 Jul 2024
On the power of data augmentation for head pose estimation
On the power of data augmentation for head pose estimation
Michael Welter
CVBM
31
1
0
07 Jul 2024
Semi-Supervised Segmentation via Embedding Matching
Semi-Supervised Segmentation via Embedding Matching
Weiyi Xie
Nathalie Willems
Nikolas Lessmann
Tom Gibbons
D. Massari
39
0
0
05 Jul 2024
Relative Difficulty Distillation for Semantic Segmentation
Relative Difficulty Distillation for Semantic Segmentation
Dong Liang
Yue Sun
Yun Du
Songcan Chen
Sheng-Jun Huang
31
3
0
04 Jul 2024
Joint Segmentation and Image Reconstruction with Error Prediction in
  Photoacoustic Imaging using Deep Learning
Joint Segmentation and Image Reconstruction with Error Prediction in Photoacoustic Imaging using Deep Learning
Ruibo Shang
Geoffrey P. Luke
Matthew O'Donnell
UQCV
37
0
0
02 Jul 2024
Cross-Slice Attention and Evidential Critical Loss for Uncertainty-Aware
  Prostate Cancer Detection
Cross-Slice Attention and Evidential Critical Loss for Uncertainty-Aware Prostate Cancer Detection
A. Hung
Haoxin Zheng
Kai Zhao
Kaifeng Pang
D. Terzopoulos
Kyunghyun Sung
EDL
MedIm
48
1
0
01 Jul 2024
Improve ROI with Causal Learning and Conformal Prediction
Improve ROI with Causal Learning and Conformal Prediction
Meng Ai
Zhuo Chen
Jibin Wang
Jing Shang
Tao Tao
Zhen Li
37
0
0
01 Jul 2024
Diffusion-BBO: Diffusion-Based Inverse Modeling for Online Black-Box Optimization
Diffusion-BBO: Diffusion-Based Inverse Modeling for Online Black-Box Optimization
D. Wu
Nikki Lijing Kuang
Ruijia Niu
Yi Ma
Rose Yu
47
1
0
30 Jun 2024
AstMatch: Adversarial Self-training Consistency Framework for
  Semi-Supervised Medical Image Segmentation
AstMatch: Adversarial Self-training Consistency Framework for Semi-Supervised Medical Image Segmentation
Guanghao Zhu
Jing Zhang
Juanxiu Liu
Xiaohui Du
Ruqian Hao
Yong Liu
Lin Liu
34
0
0
28 Jun 2024
Data-Driven Prediction and Uncertainty Quantification of PWR Crud-Induced Power Shift Using Convolutional Neural Networks
Data-Driven Prediction and Uncertainty Quantification of PWR Crud-Induced Power Shift Using Convolutional Neural Networks
Aidan Furlong
Farah Alsafadi
S. Palmtag
Andrew Godfrey
Xu Wu
57
1
0
27 Jun 2024
Conformalized Link Prediction on Graph Neural Networks
Conformalized Link Prediction on Graph Neural Networks
Tianyi Zhao
Jian Kang
Lu Cheng
39
7
0
26 Jun 2024
CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection
CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection
Meiying Zhang
Weiyuan Peng
Guangyao Ding
Chenyang Lei
Chunlin Ji
Qi Hao
OOD
3DPC
44
1
0
26 Jun 2024
Domain Adaptation of Echocardiography Segmentation Via Reinforcement
  Learning
Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning
Arnaud Judge
Thierry Judge
Nicolas Duchateau
Roman A. Sandler
Joseph Z. Sokol
Olivier Bernard
Pierre-Marc Jodoin
OOD
37
0
0
25 Jun 2024
Conditional Bayesian Quadrature
Conditional Bayesian Quadrature
Zonghao Chen
Masha Naslidnyk
Arthur Gretton
F. Briol
TPM
45
3
0
24 Jun 2024
Uncertainty-Aware Reward-Free Exploration with General Function
  Approximation
Uncertainty-Aware Reward-Free Exploration with General Function Approximation
Junkai Zhang
Weitong Zhang
Dongruo Zhou
Q. Gu
57
3
0
24 Jun 2024
Bayesian neural networks for predicting uncertainty in full-field
  material response
Bayesian neural networks for predicting uncertainty in full-field material response
G. Pasparakis
Lori Graham-Brady
Michael D. Shields
AI4CE
45
4
0
21 Jun 2024
VeriFlow: Modeling Distributions for Neural Network Verification
VeriFlow: Modeling Distributions for Neural Network Verification
Faried Abu Zaid
Daniel Neider
Mustafa Yalçıner
99
0
0
20 Jun 2024
Unleashing the Potential of Open-set Noisy Samples Against Label Noise
  for Medical Image Classification
Unleashing the Potential of Open-set Noisy Samples Against Label Noise for Medical Image Classification
Zehui Liao
Shishuai Hu
Yong-quan Xia
43
0
0
18 Jun 2024
Uncertainty modeling for fine-tuned implicit functions
Uncertainty modeling for fine-tuned implicit functions
A. Susmelj
Mael Macuglia
Nataša Tagasovska
Reto Sutter
Sebastiano Caprara
Jean-Philippe Thiran
E. Konukoglu
70
1
0
17 Jun 2024
CUQDS: Conformal Uncertainty Quantification under Distribution Shift for Trajectory Prediction
CUQDS: Conformal Uncertainty Quantification under Distribution Shift for Trajectory Prediction
Huiqun Huang
Sihong He
Fei Miao
49
0
0
17 Jun 2024
Understanding active learning of molecular docking and its applications
Understanding active learning of molecular docking and its applications
Jeonghyeon Kim
Juno Nam
Seongok Ryu
37
0
0
14 Jun 2024
Self-Knowledge Distillation for Learning Ambiguity
Self-Knowledge Distillation for Learning Ambiguity
Hancheol Park
Soyeong Jeong
Sukmin Cho
Jong C. Park
34
0
0
14 Jun 2024
Generative vs. Discriminative modeling under the lens of uncertainty
  quantification
Generative vs. Discriminative modeling under the lens of uncertainty quantification
Elouan Argouarc'h
François Desbouvries
Eric Barat
Eiji Kawasaki
UQCV
46
0
0
13 Jun 2024
Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
Spencer Young
Porter Jenkins
Lonchao Da
Jeff Dotson
Hua Wei
UQCV
BDL
49
2
0
13 Jun 2024
Teaching with Uncertainty: Unleashing the Potential of Knowledge
  Distillation in Object Detection
Teaching with Uncertainty: Unleashing the Potential of Knowledge Distillation in Object Detection
Junfei Yi
Jianxu Mao
Tengfei Liu
Mingjie Li
Hanyu Gu
Hui Zhang
Xiaojun Chang
Yaonan Wang
34
2
0
11 Jun 2024
Beyond the Norms: Detecting Prediction Errors in Regression Models
Beyond the Norms: Detecting Prediction Errors in Regression Models
A. Altieri
Marco Romanelli
Georg Pichler
F. Alberge
Pablo Piantanida
49
0
0
11 Jun 2024
UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving
UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving
Daniel Bogdoll
Noël Ollick
Tim Joseph
J. Marius Zöllner
37
1
0
10 Jun 2024
Domain Agnostic Conditional Invariant Predictions for Domain
  Generalization
Domain Agnostic Conditional Invariant Predictions for Domain Generalization
Zongbin Wang
Bin Pan
Zhenwei Shi
OOD
45
0
0
09 Jun 2024
On Subjective Uncertainty Quantification and Calibration in Natural
  Language Generation
On Subjective Uncertainty Quantification and Calibration in Natural Language Generation
Ziyu Wang
Chris Holmes
UQLM
53
5
0
07 Jun 2024
Concept Drift Detection using Ensemble of Integrally Private Models
Concept Drift Detection using Ensemble of Integrally Private Models
Ayush K. Varshney
V. Torra
33
4
0
07 Jun 2024
Linear Opinion Pooling for Uncertainty Quantification on Graphs
Linear Opinion Pooling for Uncertainty Quantification on Graphs
C. Damke
Eyke Hüllermeier
46
1
0
06 Jun 2024
Shedding Light on Large Generative Networks: Estimating Epistemic
  Uncertainty in Diffusion Models
Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models
Lucas Berry
Axel Brando
D. Meger
32
6
0
05 Jun 2024
CSS: Contrastive Semantic Similarity for Uncertainty Quantification of
  LLMs
CSS: Contrastive Semantic Similarity for Uncertainty Quantification of LLMs
Shuang Ao
Stefan Rueger
Advaith Siddharthan
33
1
0
05 Jun 2024
Learning Solutions of Stochastic Optimization Problems with Bayesian
  Neural Networks
Learning Solutions of Stochastic Optimization Problems with Bayesian Neural Networks
Alan A. Lahoud
Erik Schaffernicht
J. A. Stork
UQCV
30
0
0
05 Jun 2024
Previous
123456...434445
Next