Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08089
Cited By
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
22 February 2018
Andre Wibisono
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem"
50 / 61 papers shown
Title
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
67
0
0
08 May 2025
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
39
0
0
05 May 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
63
0
0
03 Mar 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
62
0
0
26 Feb 2025
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
55
1
0
08 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
82
0
0
28 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
48
0
0
11 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
71
2
0
08 Jan 2025
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
37
3
0
13 Oct 2024
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
224
1
0
08 Oct 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
46
0
0
03 Oct 2024
Hitchhiker's guide on the relation of Energy-Based Models with other generative models, sampling and statistical physics: a comprehensive review
Davide Carbone
43
1
0
19 Jun 2024
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
46
3
0
02 Apr 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
82
14
0
08 Feb 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
37
7
0
05 Dec 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
43
7
0
27 May 2023
Score Operator Newton transport
N. Chandramoorthy
F. Schaefer
Youssef Marzouk
OT
27
1
0
16 May 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
35
21
0
10 Apr 2023
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
37
8
0
05 Apr 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
39
6
0
08 Mar 2023
An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow
Carles Domingo-Enrich
Aram-Alexandre Pooladian
MDE
26
11
0
23 Feb 2023
Geometry of Score Based Generative Models
S. Ghimire
Jinyang Liu
Armand Comas Massague
Davin Hill
A. Masoomi
Mario Sznaier
Jennifer Dy
DiffM
38
8
0
09 Feb 2023
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
34
19
0
25 Nov 2022
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
48
22
0
01 Nov 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
40
4
0
25 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
40
24
0
16 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
54
15
0
05 Oct 2022
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
39
2
0
15 Aug 2022
Sampling from Log-Concave Distributions over Polytopes via a Soft-Threshold Dikin Walk
Oren Mangoubi
Nisheeth K. Vishnoi
79
2
0
19 Jun 2022
Utilising the CLT Structure in Stochastic Gradient based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
Dheeraj M. Nagaraj
Anant Raj
54
6
0
08 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
34
13
0
27 May 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
32
17
0
28 Feb 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
53
61
0
10 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
23
11
0
02 Feb 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
77
64
0
25 Jan 2022
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
76
54
0
04 Dec 2021
Sampling from Log-Concave Distributions with Infinity-Distance Guarantees
Oren Mangoubi
Nisheeth K. Vishnoi
33
14
0
07 Nov 2021
Statistical Finite Elements via Langevin Dynamics
Ömer Deniz Akyildiz
Connor Duffin
Sotirios Sabanis
Mark Girolami
36
11
0
21 Oct 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
41
21
0
21 Oct 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
55
26
0
09 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi Ma
Tong Zhang
42
16
0
05 Oct 2021
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
26
20
0
06 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
53
0
01 Jun 2021
The query complexity of sampling from strongly log-concave distributions in one dimension
Sinho Chewi
P. Gerber
Chen Lu
Thibaut Le Gouic
Philippe Rigollet
47
21
0
29 May 2021
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
19
50
0
20 May 2021
Penalized Langevin dynamics with vanishing penalty for smooth and log-concave targets
Avetik G. Karagulyan
A. Dalalyan
16
8
0
24 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
17
76
0
17 Jun 2020
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm
Adil Salim
Peter Richtárik
27
38
0
16 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
41
66
0
03 Jun 2020
1
2
Next