ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10800
  4. Cited By
Probabilistic Object Detection: Definition and Evaluation
v1v2v3v4 (latest)

Probabilistic Object Detection: Definition and Evaluation

27 November 2018
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Probabilistic Object Detection: Definition and Evaluation"

15 / 65 papers shown
Title
Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
  Detection
Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection
Di Feng
Zining Wang
Yiyang Zhou
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
Masayoshi Tomizuka
Wei Zhan
148
29
0
18 Dec 2020
One Metric to Measure them All: Localisation Recall Precision (LRP) for
  Evaluating Visual Detection Tasks
One Metric to Measure them All: Localisation Recall Precision (LRP) for Evaluating Visual Detection TasksIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Kemal Oksuz
Baris Can Cam
Sinan Kalkan
Emre Akbas
204
39
0
21 Nov 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAMLUQCVEDL
292
277
0
20 Nov 2020
Multi-Agent Active Search using Realistic Depth-Aware Noise Model
Multi-Agent Active Search using Realistic Depth-Aware Noise Model
Ramina Ghods
W. Durkin
J. Schneider
213
18
0
09 Nov 2020
The Robotic Vision Scene Understanding Challenge
The Robotic Vision Scene Understanding Challenge
David Hall
Ben Talbot
S. Bista
Haoyang Zhang
Rohan Smith
Feras Dayoub
Niko Sünderhauf
149
15
0
11 Sep 2020
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset
  Shifts
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset Shifts
Tiago Azevedo
R. D. Jong
Matthew Mattina
Partha P. Maji
UQCV
146
16
0
07 Sep 2020
Probabilistic Deep Learning for Instance Segmentation
Probabilistic Deep Learning for Instance Segmentation
J. L. Rumberger
Lisa Mais
Dagmar Kainmueller
UQCVSSeg
240
9
0
24 Aug 2020
Representation Learning with Video Deep InfoMax
Representation Learning with Video Deep InfoMax
R. Devon Hjelm
Philip Bachman
SSLMDE
201
28
0
27 Jul 2020
Inferring Spatial Uncertainty in Object Detection
Inferring Spatial Uncertainty in Object DetectionIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2020
Zining Wang
Di Feng
Yiyang Zhou
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
Masayoshi Tomizuka
Wei Zhan
226
29
0
07 Mar 2020
MonoLayout: Amodal scene layout from a single image
MonoLayout: Amodal scene layout from a single imageIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2020
Kaustubh Mani
Swapnil Daga
Shubhika Garg
N. S. Shankar
Krishna Murthy Jatavallabhula
K. M. Krishna
167
87
0
19 Feb 2020
Empirical Upper Bound in Object Detection and More
Empirical Upper Bound in Object Detection and More
Ali Borji
Seyed Mehdi Iranmanesh
VLMObjD
159
25
0
27 Nov 2019
SMArT: Training Shallow Memory-aware Transformers for Robotic
  Explainability
SMArT: Training Shallow Memory-aware Transformers for Robotic ExplainabilityIEEE International Conference on Robotics and Automation (ICRA), 2019
Marcella Cornia
Lorenzo Baraldi
Rita Cucchiara
257
29
0
07 Oct 2019
The Probabilistic Object Detection Challenge
The Probabilistic Object Detection Challenge
John Skinner
David Hall
Haoyang Zhang
Feras Dayoub
Niko Sünderhauf
AAML
84
9
0
19 Mar 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDLUQCV
145
124
0
09 Mar 2019
Deep Multi-modal Object Detection and Semantic Segmentation for
  Autonomous Driving: Datasets, Methods, and Challenges
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
475
1,189
0
21 Feb 2019
Previous
12