ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.07086
  4. Cited By
Human uncertainty makes classification more robust

Human uncertainty makes classification more robust

19 August 2019
Joshua C. Peterson
Ruairidh M. Battleday
Thomas Griffiths
Olga Russakovsky
    OOD
ArXivPDFHTML

Papers citing "Human uncertainty makes classification more robust"

36 / 36 papers shown
Title
Uncertainty Weighted Gradients for Model Calibration
Uncertainty Weighted Gradients for Model Calibration
Jinxu Lin
Linwei Tao
Minjing Dong
Chang Xu
UQCV
63
0
0
26 Mar 2025
Subjective Logic Encodings
Subjective Logic Encodings
Jake Vasilakes
Chrysoula Zerva
Sophia Ananiadou
75
0
0
17 Feb 2025
Training and Evaluating with Human Label Variation: An Empirical Study
Training and Evaluating with Human Label Variation: An Empirical Study
Kemal Kurniawan
Meladel Mistica
Timothy Baldwin
Jey Han Lau
82
1
0
03 Feb 2025
Measuring Error Alignment for Decision-Making Systems
Measuring Error Alignment for Decision-Making Systems
Binxia Xu
Antonis Bikakis
Daniel Onah
A. Vlachidis
Luke Dickens
54
0
0
03 Jan 2025
Seeking Consistent Flat Minima for Better Domain Generalization via Refining Loss Landscapes
Seeking Consistent Flat Minima for Better Domain Generalization via Refining Loss Landscapes
Aodi Li
Liansheng Zhuang
Xiao Long
Minghong Yao
Shafei Wang
381
0
0
18 Dec 2024
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Michele Caprio
David Stutz
Shuo Li
Arnaud Doucet
UQCV
121
5
0
07 Nov 2024
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
81
1
0
30 Oct 2024
Are We Done with MMLU?
Are We Done with MMLU?
Aryo Pradipta Gema
Joshua Ong Jun Leang
Giwon Hong
Alessio Devoto
Alberto Carlo Maria Mancino
...
R. McHardy
Joshua Harris
Jean Kaddour
Emile van Krieken
Pasquale Minervini
ELM
90
36
0
06 Jun 2024
Learning Personalized Decision Support Policies
Learning Personalized Decision Support Policies
Umang Bhatt
Valerie Chen
Katherine M. Collins
Parameswaran Kamalaruban
Emma Kallina
Adrian Weller
Ameet Talwalkar
OffRL
110
10
0
13 Apr 2023
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
FedML
ELM
84
409
0
01 Jun 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
41
952
0
27 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
83
1,401
0
08 Dec 2017
Deep Learning Scaling is Predictable, Empirically
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
75
728
0
01 Dec 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
221
9,687
0
25 Oct 2017
Toward Robustness against Label Noise in Training Deep Discriminative
  Neural Networks
Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks
Arash Vahdat
NoLa
50
297
0
31 May 2017
Deep Learning is Robust to Massive Label Noise
Deep Learning is Robust to Massive Label Noise
David Rolnick
Andreas Veit
Serge J. Belongie
Nir Shavit
NoLa
57
553
0
30 May 2017
Shake-Shake regularization
Shake-Shake regularization
Xavier Gastaldi
3DPC
BDL
OOD
48
380
0
21 May 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
409
10,281
0
16 Nov 2016
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
440
3,124
0
04 Nov 2016
Deep Pyramidal Residual Networks
Deep Pyramidal Residual Networks
Dongyoon Han
Jiwhan Kim
Junmo Kim
64
690
0
10 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
578
36,599
0
25 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
480
5,868
0
08 Jul 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
226
7,951
0
23 May 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
264
10,149
0
16 Mar 2016
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense
  Image Annotations
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations
Ranjay Krishna
Yuke Zhu
Oliver Groth
Justin Johnson
Kenji Hata
...
Yannis Kalantidis
Li Li
David A. Shamma
Michael S. Bernstein
Fei-Fei Li
156
5,706
0
23 Feb 2016
Embracing Error to Enable Rapid Crowdsourcing
Embracing Error to Enable Rapid Crowdsourcing
Ranjay Krishna
Kenji Hata
Stephanie Chen
Joshua Kravitz
David A. Shamma
Li Fei-Fei
Michael S. Bernstein
LRM
50
90
0
14 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.1K
192,638
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
395
27,231
0
02 Dec 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
40
3,061
0
14 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
161
19,448
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
588
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
143
18,922
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
751
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
914
39,383
0
01 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
212
43,290
0
01 May 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
140
14,831
1
21 Dec 2013
1