ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.00932
  4. Cited By
Exploring the Limits of Weakly Supervised Pretraining

Exploring the Limits of Weakly Supervised Pretraining

2 May 2018
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
L. V. D. van der Maaten
    VLM
ArXivPDFHTML

Papers citing "Exploring the Limits of Weakly Supervised Pretraining"

50 / 825 papers shown
Title
On the Adversarial Robustness of Vision Transformers
On the Adversarial Robustness of Vision Transformers
Rulin Shao
Zhouxing Shi
Jinfeng Yi
Pin-Yu Chen
Cho-Jui Hsieh
ViT
30
137
0
29 Mar 2021
Pervasive Label Errors in Test Sets Destabilize Machine Learning
  Benchmarks
Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
Curtis G. Northcutt
Anish Athalye
Jonas W. Mueller
22
519
0
26 Mar 2021
Active multi-fidelity Bayesian online changepoint detection
Active multi-fidelity Bayesian online changepoint detection
Gregory W. Gundersen
Diana Cai
Chuteng Zhou
Barbara E. Engelhardt
Ryan P. Adams
14
10
0
26 Mar 2021
Contrasting Contrastive Self-Supervised Representation Learning
  Pipelines
Contrasting Contrastive Self-Supervised Representation Learning Pipelines
Klemen Kotar
Gabriel Ilharco
Ludwig Schmidt
Kiana Ehsani
Roozbeh Mottaghi
SSL
23
45
0
25 Mar 2021
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy
  Labels
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels
Evgenii Zheltonozhskii
Chaim Baskin
A. Mendelson
A. Bronstein
Or Litany
SSL
25
92
0
25 Mar 2021
THAT: Two Head Adversarial Training for Improving Robustness at Scale
THAT: Two Head Adversarial Training for Improving Robustness at Scale
Zuxuan Wu
Tom Goldstein
L. Davis
Ser-Nam Lim
AAML
GAN
21
1
0
25 Mar 2021
Vision Transformers for Dense Prediction
Vision Transformers for Dense Prediction
René Ranftl
Alexey Bochkovskiy
V. Koltun
ViT
MDE
42
1,659
0
24 Mar 2021
Factors of Influence for Transfer Learning across Diverse Appearance
  Domains and Task Types
Factors of Influence for Transfer Learning across Diverse Appearance Domains and Task Types
Thomas Mensink
J. Uijlings
Alina Kuznetsova
Michael Gygli
V. Ferrari
VLM
37
80
0
24 Mar 2021
Can Vision Transformers Learn without Natural Images?
Can Vision Transformers Learn without Natural Images?
Kodai Nakashima
Hirokatsu Kataoka
Asato Matsumoto
K. Iwata
Nakamasa Inoue
ViT
20
34
0
24 Mar 2021
Self-Supervised Pretraining Improves Self-Supervised Pretraining
Self-Supervised Pretraining Improves Self-Supervised Pretraining
Colorado Reed
Xiangyu Yue
Aniruddha Nrusimha
Sayna Ebrahimi
Vivek Vijaykumar
...
Shanghang Zhang
Devin Guillory
Sean L. Metzger
Kurt Keutzer
Trevor Darrell
25
105
0
23 Mar 2021
Incorporating Convolution Designs into Visual Transformers
Incorporating Convolution Designs into Visual Transformers
Kun Yuan
Shaopeng Guo
Ziwei Liu
Aojun Zhou
F. Yu
Wei Wu
ViT
41
467
0
22 Mar 2021
The Shape of Learning Curves: a Review
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
18
122
0
19 Mar 2021
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual
  Representation Learning
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning
Zhigang Dai
Bolun Cai
Yugeng Lin
Junying Chen
SSL
25
6
0
19 Mar 2021
MDMMT: Multidomain Multimodal Transformer for Video Retrieval
MDMMT: Multidomain Multimodal Transformer for Video Retrieval
Maksim Dzabraev
M. Kalashnikov
Stepan Alekseevich Komkov
Aleksandr Petiushko
21
128
0
19 Mar 2021
Consistency-based Active Learning for Object Detection
Consistency-based Active Learning for Object Detection
Weiping Yu
Sijie Zhu
Taojiannan Yang
C. L. P. Chen
ObjD
22
50
0
18 Mar 2021
Learned Gradient Compression for Distributed Deep Learning
Learned Gradient Compression for Distributed Deep Learning
L. Abrahamyan
Yiming Chen
Giannis Bekoulis
Nikos Deligiannis
32
45
0
16 Mar 2021
Revisiting ResNets: Improved Training and Scaling Strategies
Revisiting ResNets: Improved Training and Scaling Strategies
Irwan Bello
W. Fedus
Xianzhi Du
E. D. Cubuk
A. Srinivas
Tsung-Yi Lin
Jonathon Shlens
Barret Zoph
29
297
0
13 Mar 2021
Fast and Accurate Model Scaling
Fast and Accurate Model Scaling
Piotr Dollár
Mannat Singh
Ross B. Girshick
20
98
0
11 Mar 2021
Deep learning with photosensor timing information as a background
  rejection method for the Cherenkov Telescope Array
Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
S. Spencer
T. Armstrong
J. Watson
S. Mangano
Y. Rénier
G. Cotter
23
17
0
10 Mar 2021
Knowledge Evolution in Neural Networks
Knowledge Evolution in Neural Networks
Ahmed Taha
Abhinav Shrivastava
L. Davis
45
21
0
09 Mar 2021
Self-supervised Pretraining of Visual Features in the Wild
Self-supervised Pretraining of Visual Features in the Wild
Priya Goyal
Mathilde Caron
Benjamin Lefaudeux
Min Xu
Pengchao Wang
...
Mannat Singh
Vitaliy Liptchinsky
Ishan Misra
Armand Joulin
Piotr Bojanowski
VLM
SSL
21
270
0
02 Mar 2021
Accounting for Variance in Machine Learning Benchmarks
Accounting for Variance in Machine Learning Benchmarks
Xavier Bouthillier
Pierre Delaunay
Mirko Bronzi
Assya Trofimov
Brennan Nichyporuk
...
Dmitriy Serdyuk
Tal Arbel
C. Pal
Gaël Varoquaux
Pascal Vincent
26
148
0
01 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
103
27,682
0
26 Feb 2021
Rethinking Natural Adversarial Examples for Classification Models
Rethinking Natural Adversarial Examples for Classification Models
Xiao-Li Li
Jianmin Li
Ting Dai
Jie Shi
Jun Zhu
Xiaolin Hu
AAML
VLM
20
13
0
23 Feb 2021
On Interaction Between Augmentations and Corruptions in Natural
  Corruption Robustness
On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness
Eric Mintun
A. Kirillov
Saining Xie
20
89
0
22 Feb 2021
LogME: Practical Assessment of Pre-trained Models for Transfer Learning
LogME: Practical Assessment of Pre-trained Models for Transfer Learning
Kaichao You
Yong Liu
Jianmin Wang
Mingsheng Long
21
178
0
22 Feb 2021
Domain Adaptation for Medical Image Analysis: A Survey
Domain Adaptation for Medical Image Analysis: A Survey
Hao Guan
Mingxia Liu
OOD
28
529
0
18 Feb 2021
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize
  Long-Tail Visual Concepts
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts
Soravit Changpinyo
P. Sharma
Nan Ding
Radu Soricut
VLM
275
1,082
0
17 Feb 2021
MosaicOS: A Simple and Effective Use of Object-Centric Images for
  Long-Tailed Object Detection
MosaicOS: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection
Cheng Zhang
Tai-Yu Pan
Yandong Li
Hexiang Hu
D. Xuan
Soravit Changpinyo
Boqing Gong
Wei-Lun Chao
ObjD
VLM
71
39
0
17 Feb 2021
High-Performance Large-Scale Image Recognition Without Normalization
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
298
3,700
0
11 Feb 2021
How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
  Learned
How to Train Your Robot with Deep Reinforcement Learning; Lessons We've Learned
Julian Ibarz
Jie Tan
Chelsea Finn
Mrinal Kalakrishnan
P. Pastor
Sergey Levine
OffRL
11
516
0
04 Feb 2021
Scaling Laws for Transfer
Scaling Laws for Transfer
Danny Hernandez
Jared Kaplan
T. Henighan
Sam McCandlish
16
237
0
02 Feb 2021
Analysing the Noise Model Error for Realistic Noisy Label Data
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
21
19
0
24 Jan 2021
Clairvoyant Prefetching for Distributed Machine Learning I/O
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
31
55
0
21 Jan 2021
Pre-training without Natural Images
Pre-training without Natural Images
Hirokatsu Kataoka
Kazushige Okayasu
Asato Matsumoto
Eisuke Yamagata
Ryosuke Yamada
Nakamasa Inoue
Akio Nakamura
Y. Satoh
79
116
0
21 Jan 2021
An Empirical Study and Analysis on Open-Set Semi-Supervised Learning
An Empirical Study and Analysis on Open-Set Semi-Supervised Learning
Huixiang Luo
Hao Cheng
Fanxu Meng
Yuting Gao
Ke Li
Mengdan Zhang
Xing Sun
17
8
0
19 Jan 2021
Supervised Transfer Learning at Scale for Medical Imaging
Supervised Transfer Learning at Scale for Medical Imaging
Basil Mustafa
Aaron Loh
Jan Freyberg
Patricia MacWilliams
Megan Wilson
...
Shruthi Prabhakara
Umesh Telang
Alan Karthikesalingam
N. Houlsby
Vivek Natarajan
LM&MA
26
67
0
14 Jan 2021
Big Self-Supervised Models Advance Medical Image Classification
Big Self-Supervised Models Advance Medical Image Classification
Shekoofeh Azizi
Basil Mustafa
Fiona Ryan
Zach Beaver
Jan Freyberg
...
Alan Karthikesalingam
Simon Kornblith
Ting-Li Chen
Vivek Natarajan
Mohammad Norouzi
SSL
19
504
0
13 Jan 2021
Re-labeling ImageNet: from Single to Multi-Labels, from Global to
  Localized Labels
Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
Sangdoo Yun
Seong Joon Oh
Byeongho Heo
Dongyoon Han
Junsuk Choe
Sanghyuk Chun
398
142
0
13 Jan 2021
Learning from Weakly-labeled Web Videos via Exploring Sub-Concepts
Learning from Weakly-labeled Web Videos via Exploring Sub-Concepts
Kunpeng Li
Zizhao Zhang
Guanhang Wu
Xuehan Xiong
Chen-Yu Lee
Zhichao Lu
Y. Fu
Tomas Pfister
21
5
0
11 Jan 2021
Self-Supervised Pretraining of 3D Features on any Point-Cloud
Self-Supervised Pretraining of 3D Features on any Point-Cloud
Zaiwei Zhang
Rohit Girdhar
Armand Joulin
Ishan Misra
3DPC
126
268
0
07 Jan 2021
Model Extraction and Defenses on Generative Adversarial Networks
Model Extraction and Defenses on Generative Adversarial Networks
Hailong Hu
Jun Pang
SILM
MIACV
31
14
0
06 Jan 2021
A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
  Adversarial Fine-tuning
A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via Adversarial Fine-tuning
Ahmadreza Jeddi
M. Shafiee
A. Wong
AAML
25
37
0
25 Dec 2020
Toward Transformer-Based Object Detection
Toward Transformer-Based Object Detection
Josh Beal
Eric Kim
Eric Tzeng
Dong Huk Park
Andrew Zhai
Dmitry Kislyuk
ViT
22
209
0
17 Dec 2020
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed
  Object Detection
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection
Jingru Tan
Xin Lu
Gang Zhang
Changqing Yin
Quanquan Li
VLM
22
167
0
15 Dec 2020
Bayesian neural network with pretrained protein embedding enhances
  prediction accuracy of drug-protein interaction
Bayesian neural network with pretrained protein embedding enhances prediction accuracy of drug-protein interaction
QHwan Kim
Joon-Hyuk Ko
Sunghoon Kim
Nojun Park
W. Jhe
BDL
32
27
0
15 Dec 2020
Simple Copy-Paste is a Strong Data Augmentation Method for Instance
  Segmentation
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Yin Cui
A. Srinivas
Rui Qian
Tsung-Yi Lin
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
240
968
0
13 Dec 2020
Concept Generalization in Visual Representation Learning
Concept Generalization in Visual Representation Learning
Mert Bulent Sariyildiz
Yannis Kalantidis
Diane Larlus
Alahari Karteek
SSL
26
50
0
10 Dec 2020
Large-Scale Generative Data-Free Distillation
Large-Scale Generative Data-Free Distillation
Liangchen Luo
Mark Sandler
Zi Lin
A. Zhmoginov
Andrew G. Howard
19
43
0
10 Dec 2020
Previous
123...101112...151617
Next